Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1^k1 * p2^k2 *…*pm^km.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N = p1^k1 * p2^k2 *…*pm^km, where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi, ki is 1 and must NOT be printed out.
Sample Input:
97532468
Sample Output:
97532468=2^2*11*17*101*1291
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
bool prime(int a){
int i;
int len=sqrt(a);
for(i=2;i<len;i++){
if(a%i==0){
return false;
}
}
return true;
}
int main(){
int n;
scanf("%d",&n);
if(n==1){
printf("1=1
");
return 0;
}
int ncopy=n;
int i;
printf("%d=",n);
for(i=2;i<=ncopy;i++){
int in=0;
if(prime(i)){
while(n%i==0){
in++;
n/=i;
}
}
if(in==1){
printf("%d",i);
}else if(in>1){
printf("%d^%d",i,in);
}
if(n!=1&&in>=1){
printf("*");
}else if(n==1){
break;
}
}
return 0;
}