注意 和 标记的下传。
我们可以控制懒惰标记的优先级。
由于 操作的优先级高于 操作,当下传 操作时可直接强制清空 的 。
实际上,当一个节点同时存在 和 标记时,一定是先有的 再被 ,因为如果反之,该节点上的 标记会被清空。
#include<cstdio> //Fast Matrix Operations
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 200000 + 2;
typedef long long ll;
ll sumv[maxn * 2+1][21];
int minv[maxn * 2+1][21], maxv[maxn * 2+1][21];
int lazy[maxn * 2+1][21], set[maxn * 2+1][21];
int chk;
int _min, _max;
void init(){
memset(sumv, 0, sizeof(sumv));
memset(minv, 0, sizeof(minv));
memset(maxv, 0, sizeof(maxv));
memset(lazy, 0, sizeof(lazy));
memset(set, 0, sizeof(set));
}
void down(int L,int R,int o,int id){
int mid = (L + R) / 2;
if (set[o][id]) {
int k=set[o][id];
set[o * 2][id] = set[o * 2 + 1][id] = k;
sumv[o * 2][id] = (mid - L + 1)*k, sumv[o * 2 + 1][id] = (R - mid)*k; //更新sum
minv[o * 2][id] = maxv[o * 2][id] = minv[o * 2 + 1][id] = maxv[o * 2 + 1][id] = k; //更新minv,maxv
lazy[o * 2][id] = lazy[o * 2 + 1][id] = 0;
set[o][id] = 0;
}
if (lazy[o][id]){
int k = lazy[o][id];
lazy[o * 2][id] += k, lazy[o * 2 + 1][id] += k;
sumv[o * 2][id] += (mid - L + 1)*k, sumv[o * 2 + 1][id] += (R - mid)*k;
minv[o * 2][id] += k, maxv[o * 2][id] += k, minv[o * 2 + 1][id] += k, maxv[o * 2 + 1][id] += k;
lazy[o][id] = 0;
}
}
void update(int l, int r,int k, int o, int id, int L, int R){
if (l <= L&&r >= R){
if (chk == 1)
{
lazy[o][id] += k;
sumv[o][id] += (R - L + 1)*k;
minv[o][id] += k, maxv[o][id] += k;
}
if (chk == 2) {
lazy[o][id] = 0;
sumv[o][id] = (R - L + 1)*k;
minv[o][id] = maxv[o][id] = k;
set[o][id] = k;
}
}
else{
int mid = (L + R) / 2;
down(L,R,o,id);
if (l <= mid)update(l, r, k, o * 2, id, L, mid);
if (r > mid)update(l, r, k, o * 2 + 1, id, mid + 1, R);
minv[o][id] = min(minv[o * 2][id], minv[o * 2 + 1][id]);
maxv[o][id] = max(maxv[o * 2][id], maxv[o * 2 + 1][id]);
sumv[o][id] = sumv[o * 2][id] + sumv[o * 2 + 1][id];
}
}
ll query(int l, int r, int o, int id, int L, int R){
if (l <= L&&r >= R) { //包含
_min = min(minv[o][id], _min);
_max = max(maxv[o][id], _max);
return sumv[o][id];
}
else
{
int mid = (L + R) / 2;
ll a = 0;
down(L,R,o,id);
if (l <= mid)a += query(l, r, o * 2, id, L, mid);
if (r > mid)a += query(l, r, o * 2 + 1, id, mid + 1, R);
maxv[o][id] = max(maxv[o * 2][id], maxv[o*2+1][id]);
minv[o][id] = min(minv[o * 2][id],minv[o * 2 + 1][id]);
sumv[o][id] = sumv[o * 2][id] + sumv[o * 2 + 1][id];
return a;
}
}
int main(){
int r, c, m;
while (scanf("%d", &r) != EOF)
{
scanf("%d%d",&c, &m);
init();
for (int i = 1; i <= m; ++i)
{
scanf("%d", &chk);
int x1, y1, x2, y2, v;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
if (chk<3)
{
scanf("%d", &v);
for (int j = x1; j <= x2; ++j) update(y1, y2, v, 1, j, 1, c);
}
if (chk == 3)
{
_min = 10000000 + 123, _max = -12345;
ll p=0;
for (int j = x1; j <= x2; ++j)
p += query(y1, y2, 1, j, 1, c);
printf("%lld ", p);
printf("%d %d
", _min, _max);
}
}
}
return 0;
}