本篇文章综合了网上的多篇博客。
说到分布式事务,就会谈到那个经典的”账号转账”问题:2个账号,分布处于2个不同的DB,或者说2个不同的子系统里面,A要扣钱,B要加钱,如何保证原子性?
一般的思路都是通过消息中间件来实现“最终一致性”:A系统扣钱,然后发条消息给中间件,B系统接收此消息,进行加钱。
但这里面有个问题:A是先update DB,后发送消息呢? 还是先发送消息,后update DB?
假设先update DB成功,发送消息网络失败,重发又失败,怎么办?
假设先发送消息成功,update DB失败。消息已经发出去了,又不能撤回,怎么办?
所以,这里下个结论: 只要发送消息和update DB这2个操作不是原子的,无论谁先谁后,都是有问题的。
那这个问题怎么解决呢??
错误的方案
有人可能想到了,我可以把“发送消息”这个网络调用和update DB放在同1个事务里面,如果发送消息失败,update DB自动回滚。这样不就保证2个操作的原子性了吗?
这个方案看似正确,其实是错误的,原因有2:
(1)网络的2将军问题:发送消息失败,发送方并不知道是消息中间件真的没有收到消息呢?还是消息已经收到了,只是返回response的时候失败了?
如果是已经收到消息了,而发送端认为没有收到,执行update db的回滚操作。则会导致A账号的钱没有扣,B账号的钱却加了。
(2)把网络调用放在DB事务里面,可能会因为网络的延时,导致DB长事务。严重的,会block整个DB。这个风险很大。
基于以上分析,我们知道,这个方案其实是错误的!
方案1:使用非事务消息
假设消息中间件没有提供“事务消息”功能,比如你用的是Kafka。那如何解决这个问题呢?
解决方案如下:
(1)Producer端准备1张消息表,把update DB和insert message这2个操作,放在一个DB事务里面。
(2)准备一个后台程序,源源不断的把消息表中的message传送给消息中间件。失败了,不断重试重传。允许消息重复,但消息不会丢,顺序也不会打乱。
(3)Consumer端准备一个判重表。处理过的消息,记在判重表里面。实现业务的幂等。但这里又涉及一个原子性问题:如果保证消息消费 + insert message到判重表这2个操作的原子性?
消费成功,但insert判重表失败,怎么办?关于这个,在Kafka的源码分析系列,第1篇, exactly once问题的时候,有过讨论。
通过上面3步,我们基本就解决了这里update db和发送网络消息这2个操作的原子性问题。
但这个方案的一个缺点就是:需要设计DB消息表,同时还需要一个后台任务,不断扫描本地消息。导致消息的处理和业务逻辑耦合额外增加业务方的负担。
方案2 – 使用RocketMQ 事务消息
RocketMQ是一个两段式提交协议的实现,其提交过程如下:
总结:对比方案2和方案1,RocketMQ最大的改变,其实就是把“扫描消息表”这个事情,不让业务方做,而是消息中间件帮着做了。
至于消息表,其实还是没有省掉。因为消息中间件要询问发送方,事物是否执行成功,还是需要一个“变相的本地消息表”,记录事物执行状态。
参考文档
https://www.cnblogs.com/dinglang/p/5679542.html
http://lifestack.cn/archives/429.html
http://blog.csdn.net/chunlongyu/article/details/53844393
http://blog.jobbole.com/89140/