zoukankan      html  css  js  c++  java
  • 方程求根——牛顿迭代法

    这段代码实现了牛顿切线法、简化牛顿法和牛顿下山法这三种方程求解法,由于输出结果较长,只以牛顿下山法为例写一段例题

      1.代码

    %%牛顿迭代法
    %%method为-1时为牛顿切线法,method为0时为简化牛顿法,method为1时为牛顿下山法
    %%f是表达式f(x) = 0,X0是初值,epsilon是精度,interval是包含解的区间
    function NM = Newton_method(f,X0,epsilon,interval,method)
    
    Y0 = subs(f,X0);
    %%作图
    t = interval(1):(interval(2)-interval(1))/1000:interval(2);
    T = subs(f,t);
    T1 = zeros(1,max(size(t)));
    Y1 = subs(f,X0)+subs(diff(f),X0)*(t-X0);
    h = figure;
    set(h,'color','w');
    plot(t,T,'c',t,Y1,'g',X0,Y0,'ro',t,T1,'y');
    grid on;
    xlabel('x shaft');ylabel('y shaft');
    title('函数图像');
    hold on
    
    x(1) = X0;
    ub = 100;e = floor(abs(log(epsilon)));
    
    if method == -1
        disp('牛顿切线法');
        for i = 2:ub
            x(i) = x(i-1)-subs(f,x(i-1))/subs(diff(f),x(i-1));
            delta = x(i)-x(i-1);
            if abs(delta) < epsilon
                break;
            end
        end
        disp('迭代次数为:');
        i-1
        disp('迭代解为:');
        NM = vpa(x,e);
        X_end = x(i);
        Y_end = subs(f,X_end);
        
        X = double([X0 X_end]);Y = double([Y0 Y_end]);
        Y2 = Y_end+subs(diff(f),X_end)*(t-X_end);
        plot(t,Y2,'b',X_end,Y_end,'mo');
        legend('T:函数图像','Y1:初始点处切线','Y0:初始值处切点','T1:直线y=0','Y2:迭代解处的切线','Y_end:迭代解处切点');
        
        for i = 1:2
            text(X(i),Y(i),['(',num2str(X(i)),',',num2str(Y(i)),')'],'color',[0.02 0.79 0.99]);
        end
        
    elseif method == 0
        disp('简化牛顿法');
        for i = 2:ub
            x(i) = x(i-1)-subs(f,x(i-1))/subs(diff(f),x(1));
            delta = x(i)-x(i-1);
            if abs(delta) < epsilon
                break;
            end
        end
        disp('迭代次数为:');
        i-1
        disp('迭代解为:');
        NM = vpa(x,e);
        X_end = x(i);
        Y_end = subs(f,X_end);
        
        X = double([X0 X_end]);Y = double([Y0 Y_end]);
        Y2 = Y_end+subs(diff(f),X_end)*(t-X_end);
        plot(t,Y2,'b',X_end,Y_end,'mo');
        legend('T:函数图像','Y1:初始点处切线','Y0:初始值处切点','T1:直线y=0','Y2:迭代解处的切线','Y_end:迭代解处切点');
        
        for i = 1:2
            text(X(i),Y(i),['(',num2str(X(i)),',',num2str(Y(i)),')'],'color',[0.02 0.79 0.99]);
        end
        
    elseif method == 1
        disp('牛顿下山法');
        lambda = input('输入下山因子:');
        for i = 2:ub
            x(i) = x(i-1)-lambda*subs(f,x(i-1))/subs(diff(f),x(1));
            delta = x(i)-x(i-1);
            if abs(delta) < epsilon
                break;
            end
        end
        disp('迭代次数为:');
        i-1
        disp('迭代解为:');
        NM = vpa(x,e);
        X_end = x(i);
        Y_end = subs(f,X_end);
        
        X = double([X0 X_end]);Y = double([Y0 Y_end]);
        Y2 = Y_end+subs(diff(f),X_end)*(t-X_end);
        plot(t,Y2,'b',X_end,Y_end,'mo');
        legend('T:函数图像','Y1:初始点处切线','Y0:初始值处切点','T1:直线y=0','Y2:迭代解处的切线','Y_end:迭代解处切点');
        
        for i = 1:2
            text(X(i),Y(i),['(',num2str(X(i)),',',num2str(Y(i)),')'],'color',[0.02 0.79 0.99]);
        end
    end
    

      2.例子

    clear all
    clc
    syms x;
    f = x^exp(x)-1;
    X0 = 0.8;
    epsilon=1e-6;
    interval = [0,2];
    method = 1;
    
    %%牛顿下山法
    X = Newton_method(f,X0,epsilon,interval,method)
    

      结果如下

    牛顿下山法
    输入下山因子:0.8
    迭代次数为:
    ans =
        21
    迭代解为:
    X =
    [ 0.8, 1.025142203855, 0.9839179688712, 1.008330092139, 0.995101056432, 1.002691649998, 0.9984619264687, 1.000859946529, 0.99951321039, 1.000273650001, 0.9998455622605, 1.000086966616, 0.9999509665425, 1.000027626624, 0.9999844283422, 1.000008774959, 0.9999950545033, 1.000002787045, 0.9999984292923, 1.000000885191, 0.9999995011337, 1.000000281144]
    

      

    由于迭代函数原因,图象上的数据显示出现了遮挡,这一部分的代码以后再进行优化

  • 相关阅读:
    开源监控软件之争
    为什么很多公司都自主开发监控系统?
    为 UWP 应用提供的 .NET 网络 API
    亲,根据二八定律,你的监控工具可能白装了哦
    PHP7正式版测试,性能惊艳!
    Java Web 前端高性能优化(一)
    天下武功无坚不破,唯快不破!
    告警信息大爆炸,运维解放秘籍!
    第33节:Java面向对象中的异常
    第33节:Java面向对象中的异常
  • 原文地址:https://www.cnblogs.com/guliangt/p/12119173.html
Copyright © 2011-2022 走看看