zoukankan      html  css  js  c++  java
  • kafka-producer.properties

    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # see org.apache.kafka.clients.producer.ProducerConfig for more details
    
    ############################# Producer Basics #############################
    
    # list of brokers used for bootstrapping knowledge about the rest of the cluster
    # format: host1:port1,host2:port2 ...
    #bootstrap.servers=localhost:9092
    
    # specify the compression codec for all data generated: none, gzip, snappy, lz4, zstd
    #compression.type=none
    
    # name of the partitioner class for partitioning events; default partition spreads data randomly
    #partitioner.class=
    
    # the maximum amount of time the client will wait for the response of a request
    #request.timeout.ms=
    
    # how long `KafkaProducer.send` and `KafkaProducer.partitionsFor` will block for
    #max.block.ms=
    
    # the producer will wait for up to the given delay to allow other records to be sent so that the sends can be batched together
    #linger.ms=
    
    # the maximum size of a request in bytes
    #max.request.size=
    
    # the default batch size in bytes when batching multiple records sent to a partition
    #batch.size=
    
    # the total bytes of memory the producer can use to buffer records waiting to be sent to the server
    #buffer.memory=
    
    #指定kafka节点列表,用于获取metadata,不必全部指定
    metadata.broker.list=192.168.142.145:9092,192.168.142.146:9092,192.168.142.147:9092
    
    #指定分区处理类。默认kafka.producer.DefaultPartitioner,表示通过key哈希到对应分区
    #partitioner.class=kafka.producer.DefaultPartitioner
    
    #是否压缩,默认0表示不压缩,1表示gzip压缩,2表示snappy压缩,压缩后消息中会有头来指明消息压缩类型,故在消费者端消息解压是透明的无需指定。
    compression.codec=none
    
    #指定序列化处理类
    serializer.class=kafka.serializer.DefaultEncoder
    
    #如果要压缩消息,这里指定那些topic要压缩消息,默认empty,表示不压缩。
    #compressed.topics=
    
    #设置发送数据是否需要服务端的反馈,有三个值0,1,-1
    #0:producer不会等待broker发送ack
    #1:当leader接收到消息之后发送ack
    #-1:当所有的follower都同步消息成功后发送ack
    request.required.acks=0
    
    #在向producer发送ack之前,broker允许等待的最大时间,如果超时,broker将会向producer发送一个error ack,意味着上一次消息因为某种原因未能成功(比如followers未能同步成功)
    request.timeout.ms=10000
    
    #同步还是异步发送消息,默认"sync"表同步,"async"表异步,异步可以提高发送吞吐量,也意味着消息将会在本地buffer中,并适时批量发送,但是也可能导致丢失未发送过去的消息
    producer.type=sync
    
    #在async模式下,当message被缓存的时间超过此值后,将会批量发送给broker,默认为5000ms
    #此值和batch.num.messages协同工作
    queue.buffering.max.ms=5000
    
    #在async模式下,producer端允许buffer的最大消息量
    #无论如何,producer都无法尽快的将消息发送给broker,从而导致在producer端大量沉积
    #此时,如果消息的条数达到阀值,将会导致producer端阻塞或者消息被抛弃,默认为10000
    queue.buffering.max.messages=20000
    
    #如果是异步,指定每次批量发送数据量,默认为200
    batch.num.messages=500
    
    #当消息在producer端沉积的条数达到"queue.buffering.max.messages"后
    #阻塞一定时间后,队列任然没有enqueue(producer任然没有发送任何消息)
    #此时producer可以继续阻塞或者将消息抛弃,此timeout值用于控制"阻塞"的时间
    #-1:无阻塞超时限制,消息不会被抛弃
    #0:立即清空队列,消息被抛弃
    queue.enqueue.timeout.ms=-1
    

      

  • 相关阅读:
    【Android】带底部指示的自定义ViewPager控件
    【Android】百度地图自定义弹出窗口
    【Linux配置】vim配置文件内容
    【Linux Tips】登陆,提示符,别名
    读《effective C++》2
    读《effective C++》1
    【PAT_Basic日记】1005. 继续(3n+1)猜想
    【PAT_Basic日记】1004 成绩排名
    【PAT_Basic日记】1002. 写出这个数
    【PAT_Basic日记】1001. 害死人不偿命的(3n+1)猜想
  • 原文地址:https://www.cnblogs.com/guoziyi/p/10299966.html
Copyright © 2011-2022 走看看