一,开源软件版本:
hadoop版本 : hadoop-2.7.5
hive版本 :apache-hive-2.1.1
spark版本: spark-2.3.0-bin-hadoop2.7
各个版本到官网下载就ok,注意的是版本之间的匹配
机器介绍,三台机器,第一台canal1为主节点+工作节点,另两台为工作节点:
10.40.20.42 canal1
10.40.20.43 canal2
10.40.20.44 canal3
二.搭建hadoop集群
1.配置环境变量 vim /etc/profile
export HADOOP_HOME=/opt/hadoop-2.7.5
export PATH=$PATH:$HADOOP_HOME/bin
export HIVE_HOME=/opt/apache-hive-1.2.2
export PATH=$PATH:$HIVE_HOME/bin
export JAVA_HOME=/usr/java/jdk1.8.0_121
export PATH=$PATH:$JAVA_HOME/bin
export SPARK_HOME=/opt/spark-2.3.0-bin-hadoop2.7
export PATH=$PATH:$SPARK_HOME/bin
2.修改hadoop配置文件
core-site.xml
---------------------------------------------------
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://canal1:8020</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoop/tmp</value>
</property>
</configuration>
yarn-site.xml
---------------------------------------------------------------
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>canal1</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
hdfs-site.xml
-------------------------------------------------------------------------
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
mapred-site.xml
----------------------------------------------------------------------
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
配置好以上文件后,复制到所有节点的配置文件,然后格式化namenode
hadoop namenode -format;
创建相应目录:
1020 hdfs dfs -mkdir -p /user/hive/tmp
1021 hdfs dfs -mkdir -p /user/hive/log
1022 hdfs dfs -chmod -R 777 /user/hive/tmp
1023 hdfs dfs -chmod -R 777 /user/hive/log
至此,可以启动hadoop集群了(非ha),到hadoop安装目录执行./start-all.sh,根据输出可以看到启动了哪些角色:
[root@canal1 sbin]# ./start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [canal1]
canal1: starting namenode, logging to /opt/hadoop-2.7.5/logs/hadoop-root-namenode-canal1.out
canal1: starting datanode, logging to /opt/hadoop-2.7.5/logs/hadoop-root-datanode-canal1.out
canal2: starting datanode, logging to /opt/hadoop-2.7.5/logs/hadoop-root-datanode-canal2.out
canal3: starting datanode, logging to /opt/hadoop-2.7.5/logs/hadoop-root-datanode-canal3.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /opt/hadoop-2.7.5/logs/hadoop-root-secondarynamenode-canal1.out
starting yarn daemons
starting resourcemanager, logging to /opt/hadoop-2.7.5/logs/yarn-root-resourcemanager-canal1.out
canal1: starting nodemanager, logging to /opt/hadoop-2.7.5/logs/yarn-root-nodemanager-canal1.out
canal3: starting nodemanager, logging to /opt/hadoop-2.7.5/logs/yarn-root-nodemanager-canal3.out
canal2: starting nodemanager, logging to /opt/hadoop-2.7.5/logs/yarn-root-nodemanager-canal2.out
三.搭建spark集群
1,将安装包解压到各个节点,更改配置文件,主要有slaves文件和spark-env.sh文件
[root@canal3 conf]# cat slaves
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# A Spark Worker will be started on each of the machines listed below.
canal1
canal2
canal3
-----------------------------------------------------------------------------------------------------------------------
已经将export SPARK_CLASSPATH=$HIVE_HOME/lib/mysql-connector-java-5.1.46-bin.jar加在spark-env.sh中
2.启动集群,spark中分为两种角色,master和worker,进程名字也是这个:
到spark安装目录下的sbin目录,启动 ./start-all.sh ,然后jps(spark默认为是在执行这个命令的节点上启动一个master,
其余都是workder,要想在其他节点也启动master,比如做 spark master的ha,可以执行 ./start-master.sh),然后jps
至此,spark集群也起来了;
四.安装hive,并整合到hadoop:
1.hive只要选一个节点,我这里是canal1节点,解压,安装,配置换机变量;
hive-site.xml
---------------------------------------------------------------------------------------------------
<configuration>
<property>
<name>hive.exec.scratchdir</name>
<value>hdfs://canal1:8020/user/hive/tmp</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>hdfs://canal1:8020/user/hive/warehouse</value>
</property>
<property>
<name>hive.querylog.location</name>
<value>hdfs://canal1:8020/user/hive/log</value>
</property>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://canal2:3306/hive?createDatabaseIfNotExist=true&characterEncoding=UTF-8&useSSL=false</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hive</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123456</value>
</property>
</configuration>
------------------------------------------------------------------------------------------------------------------------------------------------------
编辑hive-env.sh,添加
export JAVA_HOME=/usr/java/jdk1.8.0_121 ##Java路径
export HADOOP_HOME=/opt/hadoop-2.7.5 ##Hadoop安装路径
export HIVE_HOME=/opt/apache-hive-2.1.1 ##Hive安装路径
2.添加hive连接mysql驱动:
下载 mysql-connector-java-5.1.46,解压,将mysql-connector-java-5.1.46-bin.jar复制到hive安装目录下的lib;
3.执行hive metastore database初始化:
schematool -initSchema -dbType mysql
4.启动hive
五.整合到spark
将hive-site.xml文件复制到所有spark安装目录下的conf文件夹
cp hive-site.xml /opt/spark-2.3.0-bin-hadoop2.7/conf/
scp hive-site.xml canal2:/opt/spark-2.3.0-bin-hadoop2.7/conf/
scp hive-site.xml canal3:/opt/spark-2.3.0-bin-hadoop2.7/conf/
至此,hadoop+hive+spark整合完毕
六,测试
在hive客户端创建表;
create table gong_from_hive(id int,name string,location string) row format delimited fields terminated by ",";
insert into gong_from_hive values(1,"gongxxxxxeng","shanghai");
转到sparlk下bin目录下,执行 ./spark-sql,show tables:
spark-sql> show tables;
2018-05-14 13:52:59 INFO HiveMetaStore:746 - 0: get_database: default
2018-05-14 13:52:59 INFO audit:371 - ugi=root ip=unknown-ip-addr cmd=get_database: default
2018-05-14 13:52:59 INFO HiveMetaStore:746 - 0: get_database: default
2018-05-14 13:52:59 INFO audit:371 - ugi=root ip=unknown-ip-addr cmd=get_database: default
2018-05-14 13:52:59 INFO HiveMetaStore:746 - 0: get_tables: db=default pat=*
2018-05-14 13:52:59 INFO audit:371 - ugi=root ip=unknown-ip-addr cmd=get_tables: db=default pat=*
default gong_from_hive false
default gong_from_spark false
Time taken: 0.071 seconds, Fetched 2 row(s)
2018-05-14 13:52:59 INFO SparkSQLCLIDriver:951 - Time taken: 0.071 seconds, Fetched 2 row(s)
可以看到在hive客户端创建的表,查询表:
可以看到hive记录;
在spark sql客户端建表:
spark-sql> create table gong_from_spark(id int,name string,location string) row format delimited fields terminated by ",";
可以成功,测试插入也ok;
还可以去测试 spark-submit模式,spark-shell模式提交job运行情况;
七,报错问题总结:
1.java.net.ConnectException: Call From localhost/127.0.0.1 to localhost:8020 failed on connection
2.The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH 或
The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH. Please check your CLASSPATH specification, and the name of the driver.
找不到jdbc驱动;
3.hive默认数据库是derby,替换为mysql,解决只能一个客户端去连接的问题;
./spark-submit --master yarn --deploy-mode cluster --conf spark.driver.memory=4g --class org.apache.spark.examples.SparkPi --executor-cores 4 --queue myqueue ../examples/jars/spark-examples_2.11-2.3.0.jar 10
4.MetaException(message:Hive Schema version 2.1.0 does not match metastore's schema version 1.2.0 Metastore is not upgraded or corrupt
解决方案:
1.登陆mysql,修改hive metastore版本:
进行mysql:mysql -uroot -p (123456)
use hive;
select * from version;
update VERSION set SCHEMA_VERSION='2.1.0' where VER_ID=1;
2.简单粗暴:在hvie-site.xml中关闭版本验证
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>