zoukankan      html  css  js  c++  java
  • Spring-1-I 233 Matrix(HDU 5015)解题报告及测试数据

    233 Matrix

    Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

    Description

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?

     

    Input

    There are multiple test cases. Please process till EOF.

    For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

     

    Output

    For each case, output a n,m mod 10000007.

     

    Sample Input

    1 1

    1

    2 2

    0 0

    3 7

    23 47 16

     

    Sample Output

    234

    2799

    72937

    Hint

     

    题解:

    1. 数字范围很大,必须用long long 整型,不然会WA。

    2. 构造矩阵时需要注意233的增长2333=233*10+3。一般情况下,递推的矩阵都可以用使用矩阵快速幂来解决。   

    3. 求快速幂的时候,需要注意当前幂指数为奇数的时候的处理。    

    以下是代码:
    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <cstring>
    #include <algorithm>
    #include <cctype>
    #include <sstream>
    #include <queue>
    #include <stack>
    #include <stack>
    #include <map>
    using namespace std;
     
    #define F(i,s,e) for(int i = s;i<e;i++)
    #define FA(i,s,e) for(int i=s;i>e;i--)
    #define ss(x) scanf("%d",&x)
    #define s64(x) scanf("%I64d",&x)
    #define write() freopen("1.in","r",stdin)
    #define W(x) while(x)
    typedef long long LL;
     
    int aa[15];
    int N;
    const int Mod = 10000007;
    struct Matrix{
        LL m[15][15];
        Matrix(){
            memset(m,0,sizeof(m));
        }
    };
     
    void init(Matrix&a,int n){//构造初始矩阵
        N = n+2;
        F(i,0,N)F(j,0,N)a.m[i][j]=0;
        F(i,0,n)FA(j,n-1,i-1)a.m[i][j]=1;
        F(i,0,n)a.m[n][i]=1;
        a.m[n][n]=10;
        a.m[n+1][n]=3;
        a.m[n+1][n+1]=1;
    }
    Matrix mul(Matrix a,Matrix b){//矩阵乘法
        Matrix c;
        F(i,0,N)
        F(j,0,N)
        F(k,0,N)
        c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j]) % Mod;
        return c;
    }
    Matrix power_m(Matrix a,int m){//矩阵快速幂
        Matrix b;
        F(i,0,N)b.m[i][i]=1;
        W(m){
            if(m%2)b = mul(a,b);//如果是奇数,则先乘出
            a = mul(a,a);
            m = m/2;
        }
        return b;
    }
    int main(){
        //write();
        int n,m;
        LL ans;
        Matrix a,b;
        W(ss(n)!=EOF){
            ss(m);
            F(i,0,n)ss(aa[i]);
            aa[n]=233;aa[n+1]=1;
            ans =0;
            init(a,n);
            b = power_m(a,m);  
            F(i,0,N)ans=(ans+aa[i]*b.m[i][n-1])%Mod;//计算右下角的值
            printf("%I64d
    ",ans);
        }  
    }
    

      

  • 相关阅读:
    编译原理学习导论-作者四川大学唐良(转)初学者必看
    Ajax在chrome浏览器中测试调用失败解决办法
    sublime中输入法输入框只能在一个位置
    第三次作业
    第二次作业
    第一次作业
    2018年 大一下学期第零次作业
    14,15周作业
    第七周作业
    第六周作业
  • 原文地址:https://www.cnblogs.com/gzdaijie/p/4312241.html
Copyright © 2011-2022 走看看