zoukankan      html  css  js  c++  java
  • Spring-1-I 233 Matrix(HDU 5015)解题报告及测试数据

    233 Matrix

    Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

    Description

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?

     

    Input

    There are multiple test cases. Please process till EOF.

    For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

     

    Output

    For each case, output a n,m mod 10000007.

     

    Sample Input

    1 1

    1

    2 2

    0 0

    3 7

    23 47 16

     

    Sample Output

    234

    2799

    72937

    Hint

     

    题解:

    1. 数字范围很大,必须用long long 整型,不然会WA。

    2. 构造矩阵时需要注意233的增长2333=233*10+3。一般情况下,递推的矩阵都可以用使用矩阵快速幂来解决。   

    3. 求快速幂的时候,需要注意当前幂指数为奇数的时候的处理。    

    以下是代码:
    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <cstring>
    #include <algorithm>
    #include <cctype>
    #include <sstream>
    #include <queue>
    #include <stack>
    #include <stack>
    #include <map>
    using namespace std;
     
    #define F(i,s,e) for(int i = s;i<e;i++)
    #define FA(i,s,e) for(int i=s;i>e;i--)
    #define ss(x) scanf("%d",&x)
    #define s64(x) scanf("%I64d",&x)
    #define write() freopen("1.in","r",stdin)
    #define W(x) while(x)
    typedef long long LL;
     
    int aa[15];
    int N;
    const int Mod = 10000007;
    struct Matrix{
        LL m[15][15];
        Matrix(){
            memset(m,0,sizeof(m));
        }
    };
     
    void init(Matrix&a,int n){//构造初始矩阵
        N = n+2;
        F(i,0,N)F(j,0,N)a.m[i][j]=0;
        F(i,0,n)FA(j,n-1,i-1)a.m[i][j]=1;
        F(i,0,n)a.m[n][i]=1;
        a.m[n][n]=10;
        a.m[n+1][n]=3;
        a.m[n+1][n+1]=1;
    }
    Matrix mul(Matrix a,Matrix b){//矩阵乘法
        Matrix c;
        F(i,0,N)
        F(j,0,N)
        F(k,0,N)
        c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j]) % Mod;
        return c;
    }
    Matrix power_m(Matrix a,int m){//矩阵快速幂
        Matrix b;
        F(i,0,N)b.m[i][i]=1;
        W(m){
            if(m%2)b = mul(a,b);//如果是奇数,则先乘出
            a = mul(a,a);
            m = m/2;
        }
        return b;
    }
    int main(){
        //write();
        int n,m;
        LL ans;
        Matrix a,b;
        W(ss(n)!=EOF){
            ss(m);
            F(i,0,n)ss(aa[i]);
            aa[n]=233;aa[n+1]=1;
            ans =0;
            init(a,n);
            b = power_m(a,m);  
            F(i,0,N)ans=(ans+aa[i]*b.m[i][n-1])%Mod;//计算右下角的值
            printf("%I64d
    ",ans);
        }  
    }
    

      

  • 相关阅读:
    RMAN 与control文件和spfile文件的备份
    Oracle 在 多个Virtualbox 虚拟机间 跨不同物理宿主机进行通信
    如何看数据库是否处在force_logging模式下
    Dataguard学习笔记
    Oracle数据库无法向listener注册的解决一例
    [Oracle]ORA-01499的处理
    查询红帽linux/Oracle Linux的发行版本的方法
    表空间的自动扩展是文件单位的
    [Oracle]如何查看一个数据文件是否是自动扩展
    创建表空间时ora-01119和ora-27040的处理
  • 原文地址:https://www.cnblogs.com/gzdaijie/p/4312241.html
Copyright © 2011-2022 走看看