zoukankan      html  css  js  c++  java
  • uoj450.复读机

    题意:(k) 种球,每种个数必须是 (d) 的倍数,共 (n) 个,求排成一行的方案数

    [egin{align*} ext{Ans}&=n!sum_{i_1 ge 0,dmid i_1}frac{1}{i_1!}sum_{0le i_2,dmid i_2}frac{1}{i_2!}cdotssum_{0le i_k,dmid i_k}frac{1}{i_k!}\ &=[x^n]n!(sum_{ige 0,dmid i}frac{x^i}{i!})^k\ end{align*} ]

    [egin{align*} sum_{ige 0,dmid i}frac{x^i}{i!}&=sum_{ige 0}frac{x^i}{i!}frac{1}{d}sum_{0le j < d}{omega_d^j}^i& ext{单位根反演}\ &=frac{1}{d}sum_{0le j < d}sum_{ige 0}frac{(xomega_d^j)^i}{i!}\ &=frac{1}{d}sum_{0le j < d}e^{xomega_d^j}& ext{泰勒展开}\ end{align*} ]

    (d=2)

    [egin{align*} sum_{ige 0,dmid i}frac{x^i}{i!}&=frac{1}{d}sum_{0le j < d}e^{xomega_d^j}\ &=frac{e^x+e^{-x}}{2}\ (sum_{ige 0,dmid i}frac{x^i}{i!})^k&=n!(frac{e^x+e^{-x}}{2})^k\ &=frac{1}{2^k}sum_{0le ile k}C_k^ie^{ix}e^{-x(k-i)} & ext{二项式定理}\ &=frac{1}{2^k}sum_{0le ile k}C_k^ie^{2ix-kx}\ ext{Ans}&=[x^n]n!(sum_{ige 0,dmid i}frac{x^i}{i!})^k\ &=frac{n!}{2^k}sum_{0le ile k}C_k^i[x^n]e^{2ix-kx}\ &=frac{n!}{2^k}sum_{0le ile k}C_k^ifrac{(2i-k)^n}{n!} & ext{泰勒展开}\ &=frac{1}{2^k}sum_{0le ile k}C_k^i(2i-k)^n end{align*} ]

    (d=3)

    [egin{align*} sum_{ige 0,dmid i}frac{x^i}{i!}&=frac{1}{d}sum_{0le j < d}e^{xomega_d^j}\ &=frac{e^x+e^{omega_3x}+e^{omega_3^2x}}{3}\ (sum_{ige 0,dmid i}frac{x^i}{i!})^k&=n!(frac{e^x+e^{omega_3x}+e^{omega_3^2x}}{3})^k\ &=frac{1}{3^k}sum_{0le ile k}C_k^isum_{0le jle k-i}C_{k-i}^je^{ix}e^{jomega_3x}e^{(k-i-j)omega_3^2x} & ext{多项式定理}\ &=frac{1}{3^k}sum_{0le ile k}sum_{0le jle k-i}C_k^iC_{k-i}^je^{ix+jomega_3x+komega_3^2x-iomega_3^2x-jomega_3^2x}\ ext{Ans}&=[x^n]n!(sum_{ige 0,dmid i}frac{x^i}{i!})^k\ &=frac{n!}{3^k}sum_{0le ile k}sum_{0le jle k-i}C_k^iC_{k-i}^j[x^n]e^{ix+jomega_3x+komega_3^2x-iomega_3^2x-jomega_3^2x}\ &=frac{n!}{3^k}sum_{0le ile k}sum_{0le jle k-i}C_k^iC_{k-i}^jfrac{(i+jomega_3+komega_3^2-iomega_3^2-jomega_3^2)^n}{n!} & ext{泰勒展开}\ &=frac{1}{3^k}sum_{0le ile k}sum_{0le jle k-i}C_k^iC_{k-i}^j(i+jomega_3+komega_3^2-iomega_3^2-jomega_3^2)^n end{align*} ]

    不忘初心 砥砺前行
  • 相关阅读:
    ini_set /ini_get函数功能-----PHP
    【转】那个什么都懂的家伙
    word 2007为不同页插入不同页眉页脚
    August 26th 2017 Week 34th Saturday
    【2017-11-08】Linux与openCV:opencv版本查看及库文件位置等
    August 25th 2017 Week 34th Friday
    August 24th 2017 Week 34th Thursday
    August 23rd 2017 Week 34th Wednesday
    August 22nd 2017 Week 34th Tuesday
    August 21st 2017 Week 34th Monday
  • 原文地址:https://www.cnblogs.com/gzezfisher/p/uoj450.html
Copyright © 2011-2022 走看看