Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
For example, given
inorder = [9,3,15,20,7] postorder = [9,15,7,20,3]
Return the following binary tree:
3
/
9 20
/
15 7
Approach #1: C++.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
int len = inorder.size();
unordered_map<int, int> mp;
for (int i = 0; i < len; ++i)
mp[inorder[i]] = i;
return solve(inorder, 0, inorder.size()-1, postorder, 0, postorder.size()-1, mp);
}
private:
TreeNode* solve(vector<int>& inorder, int is, int ie, vector<int>& postorder, int ps, int pe, unordered_map<int, int> mp) {
if (is > ie || ps > pe) return NULL;
TreeNode* root = new TreeNode(postorder[pe]);
int it = mp[postorder[pe]];
TreeNode* leftchild = solve(inorder, is, it-1, postorder, ps, ps+it-is-1, mp);
TreeNode* rightchild = solve(inorder, it+1, ie, postorder, ps+it-is, pe-1, mp);
root->left = leftchild;
root->right = rightchild;
return root;
}
};
Approach #2: Java.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode buildTree(int[] inorder, int[] postorder) {
if (inorder == null || postorder == null || inorder.length != postorder.length) return null;
HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>();
for (int i = 0; i < inorder.length; ++i) {
hm.put(inorder[i], i);
}
return buildTreePostIn(inorder, 0, inorder.length-1, postorder, 0, postorder.length-1, hm);
}
private TreeNode buildTreePostIn(int[] inorder, int is, int ie, int[] postorder, int ps, int pe, HashMap<Integer, Integer> hm) {
if (ps > pe || is > ie) return null;
TreeNode root = new TreeNode(postorder[pe]);
int ri = hm.get(postorder[pe]);
TreeNode leftchild = buildTreePostIn(inorder, is, ri-1, postorder, ps, ps+ri-is-1, hm);
TreeNode rightchild = buildTreePostIn(inorder, ri+1, ie, postorder, ps+ri-is, pe-1, hm);
root.left = leftchild;
root.right = rightchild;
return root;
}
}
Approach #3: Python.
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def buildTree(self, inorder, postorder):
"""
:type inorder: List[int]
:type postorder: List[int]
:rtype: TreeNode
"""
def helper(istart, iend, pstart, pend):
if istart > iend or pstart > pend: return None
root = TreeNode(postorder[pend])
cur = idx[postorder[pend]]
leftchild = helper(istart, cur-1, pstart, pstart+cur-istart-1)
rightchild = helper(cur+1, iend, pstart+cur-istart, pend-1)
root.left = leftchild
root.right = rightchild
return root
idx = {}
for i in range(len(inorder)):
idx[inorder[i]] = i
return helper(0, len(inorder)-1, 0, len(postorder)-1)