zoukankan      html  css  js  c++  java
  • 818. Race Car

    Your car starts at position 0 and speed +1 on an infinite number line.  (Your car can go into negative positions.)

    Your car drives automatically according to a sequence of instructions A (accelerate) and R (reverse).

    When you get an instruction "A", your car does the following: position += speed, speed *= 2.

    When you get an instruction "R", your car does the following: if your speed is positive then speed = -1 , otherwise speed = 1.  (Your position stays the same.)

    For example, after commands "AAR", your car goes to positions 0->1->3->3, and your speed goes to 1->2->4->-1.

    Now for some target position, say the length of the shortest sequence of instructions to get there.

    Example 1:
    Input: 
    target = 3
    Output: 2
    Explanation: 
    The shortest instruction sequence is "AA".
    Your position goes from 0->1->3.
    
    Example 2:
    Input: 
    target = 6
    Output: 5
    Explanation: 
    The shortest instruction sequence is "AAARA".
    Your position goes from 0->1->3->7->7->6.

    Approach #1: C++. [DFS]

    class Solution {
    public:
        int racecar(int target) {
            queue<pair<int, int>> q;
            q.push({0, 1});
            unordered_set<string> v;
            v.insert("0_1");
            v.insert("0_-1");
            int steps = 0;
            while (!q.empty()) {
                int size = q.size();
                while (size--) {
                    auto p = q.front(); q.pop();
                    int pos = p.first;
                    int speed = p.second;
                    {
                        int pos1 = pos + speed;
                        int speed1 = speed * 2;
                        pair<int, int> p1{pos1, speed1};
                        if (pos1 == target) return steps+1;
                        if (p1.first > 0 && p1.first < 2 * target)
                            q.push(p1);
                    }
                    {
                        int speed2 = speed > 0 ? -1 : 1;
                        pair<int, int> p2{pos, speed2};
                        string key2 = to_string(pos) + "_" + to_string(speed2);
                        if (!v.count(key2)) {
                            q.push(p2);
                            v.insert(key2);
                        }
                    }
                }
                steps++;
            }
            return -1;
        }
    };
    

      

    Approach #2: Java. [DP]

    class Solution {
        private static int[][] m;
        public int racecar(int target) {
            if (m == null) {
                final int kMaxT = 10000;
                m = new int[kMaxT + 1][2];
                for (int t = 1; t <= kMaxT; ++t) {
                    int n = (int)Math.ceil(Math.log(t + 1) / Math.log(2));
                    if (1 << n == t + 1) {
                        m[t][0] = n;
                        m[t][1] = n + 1;
                        continue;
                    }
                    int l = (1 << n) - 1 - t;
                    m[t][0] = n + 1 + Math.min(m[l][1], m[l][0] + 1);
                    m[t][1] = n + 1 + Math.min(m[l][0], m[l][1] + 1);
                    for (int i = 1; i < t; ++i) {
                        for (int d = 0; d <= 1; ++d) {
                            m[t][d] = Math.min(m[t][d], Math.min(
                                m[i][0] + 2 + m[t-i][d],
                                m[i][1] + 1 + m[t-i][d]));
                        }
                    }
                }
            }
            return Math.min(m[target][0], m[target][1]);
        }
    }
    

      

    Approach #3: Python. [DP]

    class Solution(object):
        def __init__(self): self.dp = {0: 0}
        
        def racecar(self, t):
            """
            :type target: int
            :rtype: int
            """
            if t in self.dp: return self.dp[t]
            n = t.bit_length()
            if 2**n - 1 == t: self.dp[t] = n
            else:
                self.dp[t] = self.racecar(2**n - 1 - t) + n + 1
                for m in range(n-1):
                    self.dp[t] = min(self.dp[t], self.racecar(t - 2**(n-1) + 2**m) + n + m + 1)
            return self.dp[t]
    

      

    Analysis:

    http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-818-race-car/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    安装oracle 10g常见问题解决方案
    Jdbc连Oracle
    XML及其技术指南
    JSP页面的五种跳转方法
    JDBC连接MySQL
    什么定向采集,什么泛采集?
    我的论坛密码忘记了,怎么办?
    可以自动设置dedecms的栏目吗?
    动易® SiteWeaver™ 内容管理系统6.8 发布模块如何使用?
    怎样做好站群 为什么做站群?
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10165176.html
Copyright © 2011-2022 走看看