Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"Output:
4One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"Output:
2One possible longest palindromic subsequence is "bb".
Approach #1: DP. [Java]
class Solution { public int longestPalindromeSubseq(String s) { int len = s.length(); int[][] dp = new int[len+1][len+1]; for (int l = 1; l <= len; ++l) { for (int i = 0; i <= len - l; ++i) { int j = i + l - 1; if (i == j) { dp[i][j] = 1; continue; } else if (s.charAt(i) == s.charAt(j)) dp[i][j] = dp[i+1][j-1] + 2; else dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]); } } return dp[0][len-1]; } }
Analysis:
This problem is similar with 486. Predict the Winner.
dp[i][j] : the longest palindromic subsequence from i to j.
stage: length of substring.
for len = 1 to n:
for i = 0 to n-len:
j = i + len - 1;
if s[i] == s[j]:
dp[i][j] = dp[i+1][j-1] + 2;
else:
dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
ans : dp[0][len-1].
Approach #2: optimization. [C++]
class Solution { public: int longestPalindromeSubseq(string s) { int len = s.length(); vector<int> dp0(len, 0); vector<int> dp1(len, 0); vector<int> dp2(len, 0); for (int l = 1; l <= len; ++l) { for (int i = 0; i <= len - l; ++i) { int j = i + l - 1; if (i == j) { dp0[i] = 1; continue; } else if (s[i] == s[j]) { dp0[i] = dp2[i+1] + 2; } else { dp0[i] = max(dp1[i+1], dp1[i]); } } dp0.swap(dp1); dp2.swap(dp0); } return dp1[0]; } };
Reference:
http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-516-longest-palindromic-subsequence/