zoukankan      html  css  js  c++  java
  • 801. Minimum Swaps To Make Sequences Increasing

    We have two integer sequences A and B of the same non-zero length.

    We are allowed to swap elements A[i] and B[i].  Note that both elements are in the same index position in their respective sequences.

    At the end of some number of swaps, A and B are both strictly increasing.  (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)

    Given A and B, return the minimum number of swaps to make both sequences strictly increasing.  It is guaranteed that the given input always makes it possible.

    Example:
    Input: A = [1,3,5,4], B = [1,2,3,7]
    Output: 1
    Explanation: 
    Swap A[3] and B[3].  Then the sequences are:
    A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
    which are both strictly increasing.

    Note:

    • A, B are arrays with the same length, and that length will be in the range [1, 1000].
    • A[i], B[i] are integer values in the range [0, 2000].

    Approach #1: Brute force. [C++][TEL]

    class Solution {
    public:
        int minSwap(vector<int>& A, vector<int>& B) {
            int ans = INT_MAX;
            dfs(A, B, 1, 0, ans);
            return ans;
        }
        
    private:
        void dfs(vector<int>& A, vector<int>& B, int i, int c, int& ans) {
            if (c >= ans) return;
            if (i == A.size()) {
                ans = min(ans, c);
                return;
            }
            
            if (A[i] > A[i-1] && B[i] > B[i-1]) 
                dfs(A, B, i+1, c, ans);
            
            if (A[i] > B[i-1] && B[i] > A[i-1]) {
                swap(A[i], B[i]);
                dfs(A, B, i+1, c+1, ans);
                swap(A[i], B[i]);
            }
        }
    };
    

      

    Approach #2: DP. [Java]

    class Solution {
        public int minSwap(int[] A, int[] B) {
            int n = A.length;
            
            int[] keep = new int[n];
            int[] swap = new int[n];
            
            Arrays.fill(keep, Integer.MAX_VALUE);
            Arrays.fill(swap, Integer.MAX_VALUE);
            
            keep[0] = 0;
            swap[0] = 1;
            
            for (int i = 1; i < n; ++i) {
                if (A[i] > A[i-1] && B[i] > B[i-1]) {
                    keep[i] = keep[i-1];
                    swap[i] = swap[i-1] + 1;
                }
                
                if (A[i] > B[i-1] && B[i] > A[i-1]) {
                    swap[i] = Math.min(swap[i], keep[i-1] + 1);
                    keep[i] = Math.min(keep[i], swap[i-1]);
                }
            }
            
            return Math.min(keep[n-1], swap[n-1]);
        }
    }
    

      

    Analysis:

    This problem can be solved using dynamic programming, at each position, we can choose to swap or not. Since we want two sorted arrays, at each position, whether to swap or not depends on the choice at previous position, so we can form a recursive formula.

    When A[0, i-1] and B[0, i-1] are sorted, since "It is guaranted that the given input always makes it possible.". there are two cases on index i:

    They are both still sorted when add number at index i, A[i] > A[i-1] && B[i] > B[i-1] 

    They are not sorted when add number at index i, in this case, only A[i] > B[i-1] && B[i] > A[i-1] can guarantee that "the given input always makes it possible".

    swap[i] to represent the minimum swaps to make the A[0, i] and B[0, i] equences increasing for 0 <= i <= n in condition that we swap A[i] and B[i].

    keep[i] torepresent the minimum swaps to make the A[0, i] and B[i] sequences increasing for 0 <= i <= n in condition that we don't swap A[i] and B[i].

    Reference:

    http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-801-minimum-swaps-to-make-sequences-increasing/

    https://leetcode.com/problems/minimum-swaps-to-make-sequences-increasing/discuss/120516/C%2B%2B-solution-with-explanation

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    ORACLE 当字段中有数据如何修改字段类型
    ORACLE 语句
    对接支付宝支付接口开发详细步骤
    生成uuid
    DataGrip如何连接和移除MySQL数据库
    iOS提交AppStore被拒原因
    swift系统学习第二章
    swift系统学习第一章
    iOS开发:JavaScriptCore.framework的简单使用--JS与OC的交互篇
    iOS开发:微信支付
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10561659.html
Copyright © 2011-2022 走看看