zoukankan      html  css  js  c++  java
  • 879. Profitable Schemes

    There are G people in a gang, and a list of various crimes they could commit.

    The i-th crime generates a profit[i] and requires group[i] gang members to participate.

    If a gang member participates in one crime, that member can't participate in another crime.

    Let's call a profitable scheme any subset of these crimes that generates at least P profit, and the total number of gang members participating in that subset of crimes is at most G.

    How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.

    Example 1:

    Input: G = 5, P = 3, group = [2,2], profit = [2,3]
    Output: 2
    Explanation: 
    To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
    In total, there are 2 schemes.
    

    Example 2:

    Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
    Output: 7
    Explanation: 
    To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
    There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

    Note:

    1. 1 <= G <= 100
    2. 0 <= P <= 100
    3. 1 <= group[i] <= 100
    4. 0 <= profit[i] <= 100
    5. 1 <= group.length = profit.length <= 100

    Approach #1: DP. [C++]

    class Solution {
    public:
        int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) {
            const int mod = 1000000007;
            int K = group.size();
            vector<vector<vector<int>>> dp(K+1, vector<vector<int>>(P+1, vector<int>(G+1, 0)));
            dp[0][0][0] = 1;
            for (int k = 1; k <= K; ++k) {
                int p = profit[k-1];
                int g = group[k-1];
                for (int i = 0; i <= P; ++i) {
                    for (int j = 0; j <= G; ++j) {
                        dp[k][i][j] = (dp[k-1][i][j] + (j < g ? 0 : dp[k-1][max(0, i-p)][j-g])) % mod;
                    }
                }
            }
            
            return accumulate(begin(dp[K][P]), end(dp[K][P]), 0LL) % mod;
        }
    };
    

      

    Approach #2: DP. [Java]

    class Solution {
        private int mod = (int)1e9 + 7;
        public int profitableSchemes(int G, int P, int[] group, int[] profit) {
            int[][] dp = new int[G+1][P+1];
            dp[0][0] = 1;
            for (int k = 1; k <= group.length; ++k) {
                int g = group[k-1];
                int p = profit[k-1];
                for (int i = G; i >= g; --i) {
                    for (int j = P; j >= 0; --j) {
                        dp[i][j] = (dp[i][j] + dp[i-g][Math.max(0, j-p)]) % mod;
                    }
                }
            }
            int sum = 0;
            for (int i = 0; i <= G; ++i) 
                sum = (sum + dp[i][P]) % mod;
            
            return sum;
        }
    }
    

      

    Analysis:

    http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-879-profitable-schemes/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Spring IOC三种注入方式(接口注入、setter注入、构造器注入)(摘抄)
    java设计模式之代理模式
    JAVA学习中好网站
    程序员学习能力提升三要素
    ognl中的#、%和$
    二级缓存
    hibernate主键自动生成
    专科考研学校要求一览表
    Chapter 3: Connector(连接器)
    Chapter 2: A Simple Servlet Container
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10584393.html
Copyright © 2011-2022 走看看