zoukankan      html  css  js  c++  java
  • 879. Profitable Schemes

    There are G people in a gang, and a list of various crimes they could commit.

    The i-th crime generates a profit[i] and requires group[i] gang members to participate.

    If a gang member participates in one crime, that member can't participate in another crime.

    Let's call a profitable scheme any subset of these crimes that generates at least P profit, and the total number of gang members participating in that subset of crimes is at most G.

    How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.

    Example 1:

    Input: G = 5, P = 3, group = [2,2], profit = [2,3]
    Output: 2
    Explanation: 
    To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
    In total, there are 2 schemes.
    

    Example 2:

    Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
    Output: 7
    Explanation: 
    To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
    There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

    Note:

    1. 1 <= G <= 100
    2. 0 <= P <= 100
    3. 1 <= group[i] <= 100
    4. 0 <= profit[i] <= 100
    5. 1 <= group.length = profit.length <= 100

    Approach #1: DP. [C++]

    class Solution {
    public:
        int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) {
            const int mod = 1000000007;
            int K = group.size();
            vector<vector<vector<int>>> dp(K+1, vector<vector<int>>(P+1, vector<int>(G+1, 0)));
            dp[0][0][0] = 1;
            for (int k = 1; k <= K; ++k) {
                int p = profit[k-1];
                int g = group[k-1];
                for (int i = 0; i <= P; ++i) {
                    for (int j = 0; j <= G; ++j) {
                        dp[k][i][j] = (dp[k-1][i][j] + (j < g ? 0 : dp[k-1][max(0, i-p)][j-g])) % mod;
                    }
                }
            }
            
            return accumulate(begin(dp[K][P]), end(dp[K][P]), 0LL) % mod;
        }
    };
    

      

    Approach #2: DP. [Java]

    class Solution {
        private int mod = (int)1e9 + 7;
        public int profitableSchemes(int G, int P, int[] group, int[] profit) {
            int[][] dp = new int[G+1][P+1];
            dp[0][0] = 1;
            for (int k = 1; k <= group.length; ++k) {
                int g = group[k-1];
                int p = profit[k-1];
                for (int i = G; i >= g; --i) {
                    for (int j = P; j >= 0; --j) {
                        dp[i][j] = (dp[i][j] + dp[i-g][Math.max(0, j-p)]) % mod;
                    }
                }
            }
            int sum = 0;
            for (int i = 0; i <= G; ++i) 
                sum = (sum + dp[i][P]) % mod;
            
            return sum;
        }
    }
    

      

    Analysis:

    http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-879-profitable-schemes/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    常见的线性结构
    Lambda表达式学习笔记
    Spring Security 入门 (二)
    Spring Security 入门(一)
    Eclipse 创建 Maven 项目
    初学 Spring MVC(基于 Spring in Action)
    蓝桥杯之入学考试
    Java 学习总结
    二叉搜索树和红黑树
    Detours 劫持
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10584393.html
Copyright © 2011-2022 走看看