zoukankan      html  css  js  c++  java
  • 879. Profitable Schemes

    There are G people in a gang, and a list of various crimes they could commit.

    The i-th crime generates a profit[i] and requires group[i] gang members to participate.

    If a gang member participates in one crime, that member can't participate in another crime.

    Let's call a profitable scheme any subset of these crimes that generates at least P profit, and the total number of gang members participating in that subset of crimes is at most G.

    How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.

    Example 1:

    Input: G = 5, P = 3, group = [2,2], profit = [2,3]
    Output: 2
    Explanation: 
    To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
    In total, there are 2 schemes.
    

    Example 2:

    Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
    Output: 7
    Explanation: 
    To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
    There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

    Note:

    1. 1 <= G <= 100
    2. 0 <= P <= 100
    3. 1 <= group[i] <= 100
    4. 0 <= profit[i] <= 100
    5. 1 <= group.length = profit.length <= 100

    Approach #1: DP. [C++]

    class Solution {
    public:
        int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) {
            const int mod = 1000000007;
            int K = group.size();
            vector<vector<vector<int>>> dp(K+1, vector<vector<int>>(P+1, vector<int>(G+1, 0)));
            dp[0][0][0] = 1;
            for (int k = 1; k <= K; ++k) {
                int p = profit[k-1];
                int g = group[k-1];
                for (int i = 0; i <= P; ++i) {
                    for (int j = 0; j <= G; ++j) {
                        dp[k][i][j] = (dp[k-1][i][j] + (j < g ? 0 : dp[k-1][max(0, i-p)][j-g])) % mod;
                    }
                }
            }
            
            return accumulate(begin(dp[K][P]), end(dp[K][P]), 0LL) % mod;
        }
    };
    

      

    Approach #2: DP. [Java]

    class Solution {
        private int mod = (int)1e9 + 7;
        public int profitableSchemes(int G, int P, int[] group, int[] profit) {
            int[][] dp = new int[G+1][P+1];
            dp[0][0] = 1;
            for (int k = 1; k <= group.length; ++k) {
                int g = group[k-1];
                int p = profit[k-1];
                for (int i = G; i >= g; --i) {
                    for (int j = P; j >= 0; --j) {
                        dp[i][j] = (dp[i][j] + dp[i-g][Math.max(0, j-p)]) % mod;
                    }
                }
            }
            int sum = 0;
            for (int i = 0; i <= G; ++i) 
                sum = (sum + dp[i][P]) % mod;
            
            return sum;
        }
    }
    

      

    Analysis:

    http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-879-profitable-schemes/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    SQL server 分页方法小结
    在电脑上测试手机网站全攻略
    android批量插入数据效率对比
    表格细边框的两种CSS实现方法
    作为一个非纯粹的优质码农,应该有怎么样的心态?
    C#注册表读写完整操作类
    SQL Server默认1433端口修改方法
    学习编程一年多的体会
    mac上virtualbox创建vm需要注意启动顺序
    git diff patch方法
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10584393.html
Copyright © 2011-2022 走看看