zoukankan      html  css  js  c++  java
  • 879. Profitable Schemes

    There are G people in a gang, and a list of various crimes they could commit.

    The i-th crime generates a profit[i] and requires group[i] gang members to participate.

    If a gang member participates in one crime, that member can't participate in another crime.

    Let's call a profitable scheme any subset of these crimes that generates at least P profit, and the total number of gang members participating in that subset of crimes is at most G.

    How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.

    Example 1:

    Input: G = 5, P = 3, group = [2,2], profit = [2,3]
    Output: 2
    Explanation: 
    To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
    In total, there are 2 schemes.
    

    Example 2:

    Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
    Output: 7
    Explanation: 
    To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
    There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

    Note:

    1. 1 <= G <= 100
    2. 0 <= P <= 100
    3. 1 <= group[i] <= 100
    4. 0 <= profit[i] <= 100
    5. 1 <= group.length = profit.length <= 100

    Approach #1: DP. [C++]

    class Solution {
    public:
        int profitableSchemes(int G, int P, vector<int>& group, vector<int>& profit) {
            const int mod = 1000000007;
            int K = group.size();
            vector<vector<vector<int>>> dp(K+1, vector<vector<int>>(P+1, vector<int>(G+1, 0)));
            dp[0][0][0] = 1;
            for (int k = 1; k <= K; ++k) {
                int p = profit[k-1];
                int g = group[k-1];
                for (int i = 0; i <= P; ++i) {
                    for (int j = 0; j <= G; ++j) {
                        dp[k][i][j] = (dp[k-1][i][j] + (j < g ? 0 : dp[k-1][max(0, i-p)][j-g])) % mod;
                    }
                }
            }
            
            return accumulate(begin(dp[K][P]), end(dp[K][P]), 0LL) % mod;
        }
    };
    

      

    Approach #2: DP. [Java]

    class Solution {
        private int mod = (int)1e9 + 7;
        public int profitableSchemes(int G, int P, int[] group, int[] profit) {
            int[][] dp = new int[G+1][P+1];
            dp[0][0] = 1;
            for (int k = 1; k <= group.length; ++k) {
                int g = group[k-1];
                int p = profit[k-1];
                for (int i = G; i >= g; --i) {
                    for (int j = P; j >= 0; --j) {
                        dp[i][j] = (dp[i][j] + dp[i-g][Math.max(0, j-p)]) % mod;
                    }
                }
            }
            int sum = 0;
            for (int i = 0; i <= G; ++i) 
                sum = (sum + dp[i][P]) % mod;
            
            return sum;
        }
    }
    

      

    Analysis:

    http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-879-profitable-schemes/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Lucene基础排序算法改进
    大数据量的过滤 (用于爬虫,蜘蛛) Bloom Filter 布隆过滤器
    往空间,博客里添加音乐播放器
    汇编随笔
    一个女程序员的故事(酷壳陈皓)
    cmd 命令之删除整个文件夹
    亿度空间
    用wubi.exe安装ubuntu下载速度很慢怎么办?
    qtm第一次
    copy的妙用
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10584393.html
Copyright © 2011-2022 走看看