A chess knight can move as indicated in the chess diagram below:
.
This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes
N-1hops. Each hop must be from one key to another numbered key.Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing
Ndigits total.How many distinct numbers can you dial in this manner?
Since the answer may be large, output the answer modulo
10^9 + 7.
Example 1:
Input: 1 Output: 10Example 2:
Input: 2 Output: 20Example 3:
Input: 3 Output: 46
Note:
1 <= N <= 5000
Approach #1: DP. [Java]
class Solution {
public int knightDialer(int N) {
int mod = 1000000007;
int[][][] dp = new int[N+1][5][4];
for (int j = 0; j < 4; ++j)
for (int k = 0; k < 3; ++k)
dp[1][j][k] = 1;
dp[1][3][0] = dp[1][3][2] = 0;
int[][] dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int d = 0; d < 8; ++d) {
int x_ = i + dirs[d][0];
int y_ = j + dirs[d][1];
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
dp[k][i][j] = (dp[k][i][j] + dp[k-1][x_][y_]) % mod;
}
}
}
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[N][i][j]) % mod;
// System.out.print(dp[N][i][j] + " ");
}
// System.out.println("ans = " + ans);
}
return ans;
}
}
Analysis:
We can define dp[k][i][j] as of ways to dial and the last key is (i, j) after k steps
Note: dp[*][3][0], dp[*][3][2] are always zero for all the steps.
Init: dp[0][i][j] = 1
Transition: dp[k][i][j] = sum(dp[k-1][i+dy][j+dx]) 8 ways of move from last step.
ans = sum(dp[k])
Time complexity: O(kmn) or O(k*12*8) = O(k)
Space complexity: O(kmn) -> O(12 * 8) = O(1)
Approach #2: DP. [C++]
class Solution {
public:
int knightDialer(int N) {
vector<vector<int>> dp(4, vector<int>(3, 1));
dp[3][0] = dp[3][2] = 0;
int mod = pow(10, 9) + 7;
vector<pair<int, int>> dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
vector<vector<int>> temp(4, vector<int>(3, 0));
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int k = 0; k < 8; ++k) {
int x_ = i + dirs[k].first;
int y_ = j + dirs[k].second;
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
temp[i][j] = (temp[i][j] + dp[x_][y_]) % mod;
}
}
}
dp.swap(temp);
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[i][j]) % mod;
}
}
return ans;
}
};
define dp[k][i] as of ways to dial and the last key is i after k steps
init: dp[0][0:10] = 1
translation: dp[k][i] = sum(dp[k-1][j]) that j can move to i
ans: sum(dp[k])
Time complexity: O(k*10) = O(k)
Space complexity: O(k*10) -> O(10) = O(1).
Reference:
https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-935-knight-dialer/
. 