zoukankan      html  css  js  c++  java
  • 396. Rotate Function


    Given an array of integers A and let n to be its length.

    Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:

    F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].

    Calculate the maximum value of F(0), F(1), ..., F(n-1).

    Note:
    n is guaranteed to be less than 105.

    Example:

    A = [4, 3, 2, 6]
    
    F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
    F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
    F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
    F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
    
    So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

    Approach #1: Math. [Java]

    class Solution {
        public int maxRotateFunction(int[] A) {
            int len = A.length;
            int sum = 0, F = 0;
            for (int i = 0; i < len; ++i) {
                F += i * A[i];
                sum += A[i];
            }
            int max = F;
            for (int i = len-1; i > 0; --i) {
                F = F + sum - len * A[i];
                max = Math.max(F, max);
            }
            return max;
        }
    }
    

      

    Analysis:

    F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
    F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
    = 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]
    Then,

    F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
    = (Bk[0] + ... + Bk[n-1]) - nBk[0]
    = sum - nBk[0]
    Thus,

    F(k) = F(k-1) + sum - nBk[0]
    What is Bk[0]?

    k = 0; B[0] = A[0];
    k = 1; B[0] = A[len-1];
    k = 2; B[0] = A[len-2];

    Reference:

    https://leetcode.com/problems/rotate-function/discuss/87853/Java-O(n)-solution-with-explanation

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Docker之4---Docker存储卷与容器卷详解
    Docker之3---java业务镜像制作
    Docker之2---Dockerfile详解
    devops持续集成
    云计算之4---Cockpit
    云计算之3---OpenStack
    云计算之2---KVM
    云计算之1---介绍
    自动化运维工具-Ansible之7-roles
    mycat读写分离
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10815802.html
Copyright © 2011-2022 走看看