zoukankan      html  css  js  c++  java
  • POJ 1330 Nearest Common Ancestors(lca)

     POJ 1330 Nearest Common Ancestors

    A rooted tree is a well-known data structure in computer science and engineering. An example is shown below: 

     
    In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

    For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. 

    Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

    Output

    Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

    Sample Input

    2
    16
    1 14
    8 5
    10 16
    5 9
    4 6
    8 4
    4 10
    1 13
    6 15
    10 11
    6 7
    10 2
    16 3
    8 1
    16 12
    16 7
    5
    2 3
    3 4
    3 1
    1 5
    3 5
    

    Sample Output

    4
    3
    

     一道关于LCA的算法题,太弱的我不会做。贴出大神的AC代码,仅供参考学习

    #include<iostream>
    #include<vector>
    #define MAX 10010
    using namespace std;
    
    int n,flag;
    int f[MAX],r[MAX],ancestor[MAX];
    int indegreen[MAX],vis[MAX];
    vector<int> head[MAX],Que[MAX];
    
    void Init()
    {
        int i,a,b;
        cin>>n;
        flag=0;
        for(i=1;i<=n;i++)
        {
            head[i].clear();
            Que[i].clear();
            f[i]=i;
            r[i]=1;
            ancestor[i]=0;
            indegreen[i]=0;
            vis[i]=0;
        }
        for(i=1;i<n;i++)
        {
            cin>>a>>b;
            head[a].push_back(b);
            indegreen[b]++;
        }
        cin>>a>>b;
        Que[a].push_back(b);
        Que[b].push_back(a);
    }
    
    int Find(int u)
    {
        if(f[u]==u)
            return f[u];
        else
            f[u]=Find(f[u]);
        return f[u];
    }
    
    void Union(int v,int u)
    {
        int a,b;
        a=Find(v);
        b=Find(u);
        if(a==b)
            return ;    
        if(r[a]<=r[b])
        {
            f[a]=b;
            r[b]+=r[a];
        }
        else
        {
            f[b]=a;
            r[a]+=r[b];
        }
    }
    
    void LCA(int k)
    {
        int i,size;
        size=head[k].size();
        ancestor[k]=k;    
        for(i=0;i<size;i++)
        {
            if(flag)
                break;
            LCA(head[k][i]);
            Union(k,head[k][i]);
            ancestor[Find(k)]=k;
        }
        vis[k]=1;    
        size=Que[k].size();
        for(i=0;i<size;i++)
        {
            if(vis[Que[k][i]])
            {
                flag=1;
                cout<<ancestor[Find(Que[k][i])]<<endl;
                return ;
            }
        }
    }
    
    int main()
    {
        int T;
        cin>>T;
        while(T--)
        {
            Init();
            for(int i=1;i<=n;i++)
            {
                if(!indegreen[i])
                {
                    LCA(i);
                    break;
                }
            }
        }
        return 0;
    }
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    csp-s 92
    支持smtp/imap smtp/pop3的撞库python撞库脚本
    关于KB2839299 微软补丁前后的kifastcallentry
    (转载)RegSetValueEx设置REG_SZ类型键值时要注意的问题
    x64windows安全机制进程_线程_模块加载回调摘要
    windbg脚本实践3----监控特定进程创建
    windbg脚本实践2----监控特定注册表键值创建和删除
    windbg脚本实践1----监控特定文件创建 删除 读写
    纪念在乙方安全公司的2年_关于杀毒软件和远控的斗争
    文件删除的windows下面的三种路径(轻量级)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/7632978.html
Copyright © 2011-2022 走看看