zoukankan      html  css  js  c++  java
  • I

    The northern part of the Pyramid contains a very large and complicated labyrinth. The labyrinth is divided into square blocks, each of them either filled by rock, or free. There is also a little hook on the floor in the center of every free block. The ACM have found that two of the hooks must be connected by a rope that runs through the hooks in every block on the path between the connected ones. When the rope is fastened, a secret door opens. The problem is that we do not know which hooks to connect. That means also that the neccessary length of the rope is unknown. Your task is to determine the maximum length of the rope we could need for a given labyrinth.

    Input

    The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers C and R (3 <= C,R <= 1000) indicating the number of columns and rows. Then exactly R lines follow, each containing C characters. These characters specify the labyrinth. Each of them is either a hash mark (#) or a period (.). Hash marks represent rocks, periods are free blocks. It is possible to walk between neighbouring blocks only, where neighbouring blocks are blocks sharing a common side. We cannot walk diagonally and we cannot step out of the labyrinth. 
    The labyrinth is designed in such a way that there is exactly one path between any two free blocks. Consequently, if we find the proper hooks to connect, it is easy to find the right path connecting them.

    Output

    Your program must print exactly one line of output for each test case. The line must contain the sentence "Maximum rope length is X." where Xis the length of the longest path between any two free blocks, measured in blocks.

    Sample Input

    2
    3 3
    ###
    #.#
    ###
    7 6
    #######
    #.#.###
    #.#.###
    #.#.#.#
    #.....#
    #######

    Sample Output

    Maximum rope length is 0.
    Maximum rope length is 8.

    Hint

    Huge input, scanf is recommended. 
    If you use recursion, maybe stack overflow. and now C++/c 's stack size is larger than G++/gcc

    AC代码

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int c,r,dx,dy;
    int ans;
    char a[1005][1005];
    int b[1005][1005];
    int mx[4] = {0,0,1,-1};
    int my[4] = {1,-1,0,0};
    void dfs(int x,int y,int t)
    {
        b[x][y]=1;
        if(ans<t)
        {
          dx=x;
          dy=y;
          ans=t;
        }
        int xx,yy,i;
        for(i=0;i<4;i++)
        {
            xx=x+mx[i];
            yy=y+my[i];
            if(xx>-1&&xx<r&&yy>-1&&yy<c&&!b[xx][yy]&&a[xx][yy]!='#')
              dfs(xx,yy,t+1);
        }
        b[x][y]=1;
    }
    int main()
    {
        int t,i,j,sx,sy;
        scanf("%d",&t);
        while(t--)
        {
            int l=0;
            ans=0;
            memset(b,0,sizeof(b));
            scanf("%d %d",&c,&r);
            for(i=0;i<r;i++)
            {
                scanf("%s",a[i]);
                for(j=0;j<c&&l==0;j++)
                  if(a[i][j]=='.')
                  {
                    l=1;
                    sx=i;
                    sy=j;
                  }
            }
            dfs(sx,sy,0);
            memset(b,0,sizeof(b));
            dfs(dx,dy,0);
            printf("Maximum rope length is %d.
    ",ans);
        }
    }
    

      

    我的代码:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<algorithm>
     5 
     6 using namespace std;
     7 
     8 int r, c;
     9 char a[1005][1005];
    10 int num[1005][1005];
    11 int n_step, max_step, nx, ny;
    12 int dx[4] = {0, 1, 0, -1};
    13 int dy[4] = {1, 0, -1, 0};
    14 
    15 int dfs(int x, int y, int step)
    16 {
    17     n_step = step;
    18     a[x][y] = '#';
    19     for(int i = -1; i <= 1; i++)
    20     {
    21 
    22         max_step = max(max_step, n_step);
    23         nx = x + dx[i];
    24         ny = y + dy[i];
    25         if(nx > 0 && nx <= r && ny > 0 && ny <= c && a[nx][ny] == '.')
    26         {
    27             n_step++;
    28             dfs(nx, ny, n_step);
    29         }
    30     }
    31     return max_step;
    32 }
    33 
    34 int main()
    35 {
    36     int t;
    37 
    38     scanf("%d", &t);
    39     while(t--)
    40     {
    41         n_step = 0;
    42         max_step = 0;
    43         scanf("%d %d", &r, &c);
    44         getchar();
    45         memset(num, 0, sizeof(num));
    46         for(int i = 0; i < max(r, c) + 1; i++)
    47         {
    48             a[0][i] = '#';
    49             a[i][0] = '#';
    50             a[r+1][i] = '#';
    51             a[i][c+1] = '#';
    52         }
    53 
    54         //cout << r << c <<endl;
    55         for(int i = 1; i <= r; i++)
    56         {
    57             for(int j = 1; j <= c; j++)
    58             {
    59                 scanf("%c", &a[i][j]);
    60             }
    61             getchar();
    62         }
    63 
    64         for(int i = 1; i <= r; i++)
    65         {
    66             for(int j = 1; j <= c; j++)
    67             {
    68                 if(a[i][j] == '.')
    69                 {
    70                     //cout << "++" << i << j << endl;
    71                     int ans = dfs(i, j, 0);
    72                     printf("%d
    ", ans);
    73                     break;
    74                 }
    75             }
    76         }
    77 
    78 
    79     }
    80     return 0;
    81 }
    View Code
    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    jquery如何获取url中问号后面的数值
    CSS3 @font-face
    如何在代码中应用设计模式
    面试中可能被问到的常用排序算法
    《深入java虚拟机》读书笔记之垃圾收集器与内存分配策略
    《深入java虚拟机》读书笔记之Java内存区域
    Spring系列之手写一个SpringMVC
    Java多线程之Executor框架和手写简易的线程池
    Spring系列之手写注解与配置文件的解析
    Spring系列之AOP的原理及手动实现
  • 原文地址:https://www.cnblogs.com/h-hkai/p/8886456.html
Copyright © 2011-2022 走看看