zoukankan      html  css  js  c++  java
  • 39. Combination Sum

    Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

    The same repeated number may be chosen from candidates unlimited number of times.

    Note:

    • All numbers (including target) will be positive integers.
    • The solution set must not contain duplicate combinations.

    Example 1:

    Input: candidates = [2,3,6,7], target = 7,
    A solution set is:
    [
      [7],
      [2,2,3]
    ]
    

    Example 2:

    Input: candidates = [2,3,5], target = 8,
    A solution set is:
    [
      [2,2,2,2],
      [2,3,3],
      [3,5]
    ]

    AC code:

    class Solution {
    public:
        vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
            vector<vector<int>> res;
            vector<int> combination;
            sort(candidates.begin(), candidates.end());
            backtracking(candidates, res, combination, target, 0);
            return res;
        }
        
        void backtracking(vector<int>& candidates, vector<vector<int>>& res, vector<int>& combination, int target, int begin) {
            if (!target) {
                res.push_back(combination);
                return;
            }
            for (int i = begin; i != candidates.size() && target >= candidates[i]; ++i) {
                combination.push_back(candidates[i]);
                backtracking(candidates, res, combination, target-candidates[i], i);
                combination.pop_back();
            }
        }
    };
    
    Runtime: 12 ms, faster than 61.39% of C++ online submissions for Combination Sum.

    回溯法英语:backtracking)是暴力搜索法中的一种。

    对于某些计算问题而言,回溯法是一种可以找出所有(或一部分)解的一般性算法,尤其适用于约束满足问题(在解决约束满足问题时,我们逐步构造更多的候选解,并且在确定某一部分候选解不可能补全成正确解之后放弃继续搜索这个部分候选解本身及其可以拓展出的子候选解,转而测试其他的部分候选解)。

    在经典的教科书中,八皇后问题展示了回溯法的用例。(八皇后问题是在标准国际象棋棋盘中寻找八个皇后的所有分布,使得没有一个皇后能攻击到另外一个。)

    回溯法采用试错的思想,它尝试分步的去解决一个问题。在分步解决问题的过程中,当它通过尝试发现现有的分步答案不能得到有效的正确的解答的时候,它将取消上一步甚至是上几步的计算,再通过其它的可能的分步解答再次尝试寻找问题的答案。回溯法通常用最简单的递归方法来实现,在反复重复上述的步骤后可能出现两种情况:

    • 找到一个可能存在的正确的答案
    • 在尝试了所有可能的分步方法后宣告该问题没有答案

    在最坏的情况下,回溯法会导致一次复杂度指数时间的计算。

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    【webpack 系列】进阶篇
    【webpack 系列】基础篇
    手写 Promise 符合 Promises/A+规范
    React-redux: React.js 和 Redux 架构的结合
    Redux 架构理解
    javascript 中的 this 判定
    编译原理
    vue 响应式原理
    强大的版本管理工具 Git
    js实现跨域(jsonp, iframe+window.name, iframe+window.domain, iframe+window.postMessage)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9794849.html
Copyright © 2011-2022 走看看