zoukankan      html  css  js  c++  java
  • 63. Unique Paths II

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    Note: m and n will be at most 100.

    Example 1:

    Input:
    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    Output: 2
    Explanation:
    There is one obstacle in the middle of the 3x3 grid above.
    There are two ways to reach the bottom-right corner:
    1. Right -> Right -> Down -> Down
    2. Down -> Down -> Right -> Right

    AC code:

    class Solution {
    public:
        int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
            int m = obstacleGrid.size(), n = obstacleGrid[0].size();
            vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
            dp[0][1] = 1;
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    if (!obstacleGrid[i-1][j-1])
                        dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
            return dp[m][n];
        }
    };
    

    Runtime: 0 ms, faster than 100.00% of C++ online submissions for Unique Paths II.

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    H5基础
    函数
    分支结构/循环结构
    图解 idea打jar包的步骤
    jmeter查看使用文档后总结
    Ride的使用
    Robot Framework
    jmeter+ant+jenkins
    ant
    Mysql选择合适的数据类型
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9824784.html
Copyright © 2011-2022 走看看