zoukankan      html  css  js  c++  java
  • 778. Swim in Rising Water

    On an N x N grid, each square grid[i][j] represents the elevation at that point (i,j).

    Now rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distance in zero time. Of course, you must stay within the boundaries of the grid during your swim.

    You start at the top left square (0, 0). What is the least time until you can reach the bottom right square (N-1, N-1)?

    Example 1:

    Input: [[0,2],[1,3]]
    Output: 3
    Explanation:
    At time 0, you are in grid location (0, 0).
    You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
    
    You cannot reach point (1, 1) until time 3.
    When the depth of water is 3, we can swim anywhere inside the grid.
    

    Example 2:

    Input: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
    Output: 16
    Explanation:
     0  1  2  3  4
    24 23 22 21  5
    12 13 14 15 16
    11 17 18 19 20
    10  9  8  7  6
    
    The final route is marked in bold.
    We need to wait until time 16 so that (0, 0) and (4, 4) are connected.
    

    Note:

    1. 2 <= N <= 50.
    2. grid[i][j] is a permutation of [0, ..., N*N - 1].

    Approach #1:

    class Solution {
    public:
        int swimInWater(vector<vector<int>>& grid) {
            int n = grid.size();
            vector<vector<int>> done(n, vector<int>(n, -1));
            priority_queue<pos> pq;
            pq.push(pos (grid[0][0], 0, 0)); 
            done[0][0] = grid[0][0];
            while (done[n-1][n-1] == -1) {
                auto p = pq.top();
                pq.pop();
                for (int i = 0; i < 4; ++i) {
                    int a = p.x + xo[i];
                    int b = p.y + yo[i];
                    if (isValid(a, b, n) && done[a][b] == -1) {
                        int c = max(p.val, grid[a][b]);
                        done[a][b] = c;
                        pq.push(pos (c, a, b));
                    }
                }
            }
            return done[n-1][n-1];
        }
    private:
        struct pos {
            pos (int a, int b, int c) : val(a), x(b), y(c) {}
            bool operator< (const pos &d) const {return val > d.val; }
            int val, x, y;
        };
        vector<int> xo = {1, -1, 0, 0};
        vector<int> yo = {0, 0, 1, -1};
        bool isValid (int x, int y, int n) {
            return (x >= 0 && x < n && y >= 0 && y < n);
        }
    
    };
    
    Runtime: 8 ms, faster than 98.39% of C++ online submissions for Swim in Rising Water.
    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    tomcat7
    SSO
    搜索服务Solr集群搭建 使用ZooKeeper作为代理层
    JavaScript
    JavaScript中给onclick绑定事件后return false遇到的问题
    ES6.0简单了解
    php之gennerator
    RBAC权限管理及使用原生PHP实现
    使用YII框架的migrate迁移数据库
    shell脚本--文件包含
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9936028.html
Copyright © 2011-2022 走看看