zoukankan      html  css  js  c++  java
  • 778. Swim in Rising Water

    On an N x N grid, each square grid[i][j] represents the elevation at that point (i,j).

    Now rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distance in zero time. Of course, you must stay within the boundaries of the grid during your swim.

    You start at the top left square (0, 0). What is the least time until you can reach the bottom right square (N-1, N-1)?

    Example 1:

    Input: [[0,2],[1,3]]
    Output: 3
    Explanation:
    At time 0, you are in grid location (0, 0).
    You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
    
    You cannot reach point (1, 1) until time 3.
    When the depth of water is 3, we can swim anywhere inside the grid.
    

    Example 2:

    Input: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
    Output: 16
    Explanation:
     0  1  2  3  4
    24 23 22 21  5
    12 13 14 15 16
    11 17 18 19 20
    10  9  8  7  6
    
    The final route is marked in bold.
    We need to wait until time 16 so that (0, 0) and (4, 4) are connected.
    

    Note:

    1. 2 <= N <= 50.
    2. grid[i][j] is a permutation of [0, ..., N*N - 1].

    Approach #1:

    class Solution {
    public:
        int swimInWater(vector<vector<int>>& grid) {
            int n = grid.size();
            vector<vector<int>> done(n, vector<int>(n, -1));
            priority_queue<pos> pq;
            pq.push(pos (grid[0][0], 0, 0)); 
            done[0][0] = grid[0][0];
            while (done[n-1][n-1] == -1) {
                auto p = pq.top();
                pq.pop();
                for (int i = 0; i < 4; ++i) {
                    int a = p.x + xo[i];
                    int b = p.y + yo[i];
                    if (isValid(a, b, n) && done[a][b] == -1) {
                        int c = max(p.val, grid[a][b]);
                        done[a][b] = c;
                        pq.push(pos (c, a, b));
                    }
                }
            }
            return done[n-1][n-1];
        }
    private:
        struct pos {
            pos (int a, int b, int c) : val(a), x(b), y(c) {}
            bool operator< (const pos &d) const {return val > d.val; }
            int val, x, y;
        };
        vector<int> xo = {1, -1, 0, 0};
        vector<int> yo = {0, 0, 1, -1};
        bool isValid (int x, int y, int n) {
            return (x >= 0 && x < n && y >= 0 && y < n);
        }
    
    };
    
    Runtime: 8 ms, faster than 98.39% of C++ online submissions for Swim in Rising Water.
    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    【知识整理】这可能是最好的性能优化教程(一)
    【工作感悟】Android 开发者,如何提升自己的职场竞争力?
    MySql 主从复制
    MyCat 介绍、分片规则、调优的内容收集
    MyCat 安装部署,实现数据库分片存储
    [转]Activemq管理和基本介绍
    [转]ActiveMQ 即时通讯服务 浅析
    Redis 3.0集群 Window搭建方案
    【转】史上最全的“大数据”学习资源整理
    【转】【漫画解读】HDFS存储原理
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9936028.html
Copyright © 2011-2022 走看看