zoukankan      html  css  js  c++  java
  • 778. Swim in Rising Water

    On an N x N grid, each square grid[i][j] represents the elevation at that point (i,j).

    Now rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distance in zero time. Of course, you must stay within the boundaries of the grid during your swim.

    You start at the top left square (0, 0). What is the least time until you can reach the bottom right square (N-1, N-1)?

    Example 1:

    Input: [[0,2],[1,3]]
    Output: 3
    Explanation:
    At time 0, you are in grid location (0, 0).
    You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
    
    You cannot reach point (1, 1) until time 3.
    When the depth of water is 3, we can swim anywhere inside the grid.
    

    Example 2:

    Input: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
    Output: 16
    Explanation:
     0  1  2  3  4
    24 23 22 21  5
    12 13 14 15 16
    11 17 18 19 20
    10  9  8  7  6
    
    The final route is marked in bold.
    We need to wait until time 16 so that (0, 0) and (4, 4) are connected.
    

    Note:

    1. 2 <= N <= 50.
    2. grid[i][j] is a permutation of [0, ..., N*N - 1].

    Approach #1:

    class Solution {
    public:
        int swimInWater(vector<vector<int>>& grid) {
            int n = grid.size();
            vector<vector<int>> done(n, vector<int>(n, -1));
            priority_queue<pos> pq;
            pq.push(pos (grid[0][0], 0, 0)); 
            done[0][0] = grid[0][0];
            while (done[n-1][n-1] == -1) {
                auto p = pq.top();
                pq.pop();
                for (int i = 0; i < 4; ++i) {
                    int a = p.x + xo[i];
                    int b = p.y + yo[i];
                    if (isValid(a, b, n) && done[a][b] == -1) {
                        int c = max(p.val, grid[a][b]);
                        done[a][b] = c;
                        pq.push(pos (c, a, b));
                    }
                }
            }
            return done[n-1][n-1];
        }
    private:
        struct pos {
            pos (int a, int b, int c) : val(a), x(b), y(c) {}
            bool operator< (const pos &d) const {return val > d.val; }
            int val, x, y;
        };
        vector<int> xo = {1, -1, 0, 0};
        vector<int> yo = {0, 0, 1, -1};
        bool isValid (int x, int y, int n) {
            return (x >= 0 && x < n && y >= 0 && y < n);
        }
    
    };
    
    Runtime: 8 ms, faster than 98.39% of C++ online submissions for Swim in Rising Water.
    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Three.js 类的粗略总结和实现
    JavaScript方法
    JavaScript 继承和数组
    JavaScript 函数
    操作系统之堆和栈的区别
    第十二章 动态内存
    第十三章-第六小节-对象移动
    第十五章 面形对象程序设计
    动态建树和静态建树
    高斯消元整数版和浮点数版实现
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9936028.html
Copyright © 2011-2022 走看看