zoukankan      html  css  js  c++  java
  • 778. Swim in Rising Water

    On an N x N grid, each square grid[i][j] represents the elevation at that point (i,j).

    Now rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distance in zero time. Of course, you must stay within the boundaries of the grid during your swim.

    You start at the top left square (0, 0). What is the least time until you can reach the bottom right square (N-1, N-1)?

    Example 1:

    Input: [[0,2],[1,3]]
    Output: 3
    Explanation:
    At time 0, you are in grid location (0, 0).
    You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
    
    You cannot reach point (1, 1) until time 3.
    When the depth of water is 3, we can swim anywhere inside the grid.
    

    Example 2:

    Input: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
    Output: 16
    Explanation:
     0  1  2  3  4
    24 23 22 21  5
    12 13 14 15 16
    11 17 18 19 20
    10  9  8  7  6
    
    The final route is marked in bold.
    We need to wait until time 16 so that (0, 0) and (4, 4) are connected.
    

    Note:

    1. 2 <= N <= 50.
    2. grid[i][j] is a permutation of [0, ..., N*N - 1].

    Approach #1:

    class Solution {
    public:
        int swimInWater(vector<vector<int>>& grid) {
            int n = grid.size();
            vector<vector<int>> done(n, vector<int>(n, -1));
            priority_queue<pos> pq;
            pq.push(pos (grid[0][0], 0, 0)); 
            done[0][0] = grid[0][0];
            while (done[n-1][n-1] == -1) {
                auto p = pq.top();
                pq.pop();
                for (int i = 0; i < 4; ++i) {
                    int a = p.x + xo[i];
                    int b = p.y + yo[i];
                    if (isValid(a, b, n) && done[a][b] == -1) {
                        int c = max(p.val, grid[a][b]);
                        done[a][b] = c;
                        pq.push(pos (c, a, b));
                    }
                }
            }
            return done[n-1][n-1];
        }
    private:
        struct pos {
            pos (int a, int b, int c) : val(a), x(b), y(c) {}
            bool operator< (const pos &d) const {return val > d.val; }
            int val, x, y;
        };
        vector<int> xo = {1, -1, 0, 0};
        vector<int> yo = {0, 0, 1, -1};
        bool isValid (int x, int y, int n) {
            return (x >= 0 && x < n && y >= 0 && y < n);
        }
    
    };
    
    Runtime: 8 ms, faster than 98.39% of C++ online submissions for Swim in Rising Water.
    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    MySql错误解决方案汇总
    不适合做管理的人zz
    linux 自动执行 crontab学习笔记
    Google Megastore分布式存储技术全揭秘zz
    【算法】n个人围成一圈报数,报到3的退出,下面接着从1开始报,问最后剩下的是谁?
    大数据下的数据分析平台架构zz
    ETL的可扩展性和可维护性zz
    【算法】各种排序算法测试代码
    谈爱情故事,谈观察者模式
    解读设计模式单例模式(Singleton Pattern)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9936028.html
Copyright © 2011-2022 走看看