zoukankan      html  css  js  c++  java
  • Weekly Contest 78-------->810. Chalkboard XOR Game

    We are given non-negative integers nums[i] which are written on a chalkboard.  Alice and Bob take turns erasing exactly one number from the chalkboard, with Alice starting first.  If erasing a number causes the bitwise XOR of all the elements of the chalkboard to become 0, then that player loses.  (Also, we'll say the bitwise XOR of one element is that element itself, and the bitwise XOR of no elements is 0.)

    Also, if any player starts their turn with the bitwise XOR of all the elements of the chalkboard equal to 0, then that player wins.

    Return True if and only if Alice wins the game, assuming both players play optimally.

    Example:
    Input: nums = [1, 1, 2]
    Output: false
    Explanation: 
    Alice has two choices: erase 1 or erase 2. 
    If she erases 1, the nums array becomes [1, 2]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 2 = 3. Now Bob can remove any element he wants, because Alice will be the one to erase the last element and she will lose. 
    If Alice erases 2 first, now nums becomes [1, 1]. The bitwise XOR of all the elements of the chalkboard is 1 XOR 1 = 0. Alice will lose.
    
    

    Notes:

    • 1 <= N <= 1000
    • 0 <= nums[i] <= 2^16.

    Approach #1: C++.

    class Solution {
    public:
        bool xorGame(vector<int>& nums) {
            int num = 0;
            for (int i : nums) 
                num ^= i;
            return num == 0 || nums.size() % 2 == 0;
        }
    };
    

      

    Approach #2: Java.

    class Solution {
        public boolean xorGame(int[] nums) {
            int xo = 0;
            for (int i : nums)
                xo ^= i;
            return xo == 0 || nums.length % 2 == 0;
        }
    }
    

      

    Approach #3: Python.

    class Solution(object):
        def xorGame(self, nums):
            """
            :type nums: List[int]
            :rtype: bool
            """
            xo = 0
            for i in nums:
                xo ^= i
            return xo == 0 or len(nums) % 2 == 0
    

      

    Analysis:

    Math:

    Corner Case: If the XOR of all nums is 0, then A wins.

    Now we discuss the more general case where the input doesn't from the corner case.

    Proposition: Suppose the current chalkboard is S and the len(S) = N, now it's player P's turn. P can

    always make a move if XOR(S) != 0 and N is even.

    Proof:

    1. Let X = XOR(S), when X != 0, at least one bit of X must be 1. Let bit 'b' of X be the bit ie., X[b] = 1.
    2. Then we can divide the numbers in S into two groups: U and V, where numbers in U have 0 at bit b, and numbers in V have 1 at bit b.
    3. Initially, len(U) could be even or odd, But len(V) must be odd, otherwise we wouldn't have X[b] = 1, So len(U) must be odd too because of the following:
      • len(V) + len(U) = N
      • len(V) is odd
      • N is even
    4. The fact len(U) is odd implies that there must be at least one number (say Y) in S which has Y[b] = 0.
    5. If player P removes the number Y from S, the result chalkboard S' will have X' = XOR(S') = X xor Y, where X'[b] = 1. So S' != 0.

    The explanation come from https://leetcode.com/problems/chalkboard-xor-game/discuss/165396/Detailed-math-explanation-Easy-to-understand

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    day01-html
    Word中划线的方法(五种)
    关于获取请求参数并处理显示的总结
    确定目标,把握时间,创造机会,努力加油!(关于大三下学期人生规划浅谈)
    重载运算符(一个例子)
    关于连接数据库的那点总结(感觉挺好的)
    Ribbon负载均衡
    idea中一份代码模拟集群
    Eureka集群
    Eureka配置服务提供者、服务消费者、失效剔除和自我保护
  • 原文地址:https://www.cnblogs.com/h-hkai/p/9974568.html
Copyright © 2011-2022 走看看