zoukankan      html  css  js  c++  java
  • tesorflow训练完保存模型和测试模型的方法以及区别

    方法1

    一、保存模型
    1、定义变量
    2、使用saver.save()方法保存

    import tensorflow as tf  
    import numpy as np  
    
    W = tf.Variable([[1,1,1],[2,2,2]],dtype = tf.float32,name='w')  
    b = tf.Variable([[0,1,2]],dtype = tf.float32,name='b')  
    
    init = tf.initialize_all_variables()  
    saver = tf.train.Saver()  
    with tf.Session() as sess:  
            sess.run(init)  
            save_path = saver.save(sess,"save/model.ckpt")  

    二、载入模型
    1、定义变量
    2、使用saver.restore()方法载入

    import tensorflow as tf  
    import numpy as np  
    
    W = tf.Variable(tf.truncated_normal(shape=(2,3)),dtype = tf.float32,name='w')  
    b = tf.Variable(tf.truncated_normal(shape=(1,3)),dtype = tf.float32,name='b')  
    
    saver = tf.train.Saver()  
    with tf.Session() as sess:  
            saver.restore(sess,"save/model.ckpt")  

    缺点:这种方法不方便的在于,在使用模型的时候,必须把模型的结构重新定义一遍,然后载入对应名字的变量的值。

    但是很多时候我们都更希望能够读取一个文件然后就直接使用模型,而不是还要把模型重新定义一遍。所以就需要使用另一种方法。

    方法2
    不需重新定义网络结构的方法
    这个方法可以从文件中将保存的graph的所有节点加载到当前的default graph中,并返回一个saver。也就是说,我们在保存的时候,除了将变量的值保存下来,其实还有将对应graph中的各种节点保存下来,所以模型的结构也同样被保存下来了。

    一、保存模型

    ### 定义模型
    input_x = tf.placeholder(tf.float32, shape=(None, in_dim), name='input_x')
    input_y = tf.placeholder(tf.float32, shape=(None, out_dim), name='input_y')
    
    w1 = tf.Variable(tf.truncated_normal([in_dim, h1_dim], stddev=0.1), name='w1')
    b1 = tf.Variable(tf.zeros([h1_dim]), name='b1')
    w2 = tf.Variable(tf.zeros([h1_dim, out_dim]), name='w2')
    b2 = tf.Variable(tf.zeros([out_dim]), name='b2')
    keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    hidden1 = tf.nn.relu(tf.matmul(self.input_x, w1) + b1)
    hidden1_drop = tf.nn.dropout(hidden1, self.keep_prob)
    ### 定义预测目标
    y = tf.nn.softmax(tf.matmul(hidden1_drop, w2) + b2)
    # 创建saver
    saver = tf.train.Saver(...variables...)
    # 假如需要保存y,以便在预测时使用
    tf.add_to_collection('pred_network', y)
    sess = tf.Session()
    for step in xrange(1000000):
        sess.run(train_op)
        if step % 1000 == 0:
            # 保存checkpoint, 同时也默认导出一个meta_graph
            # graph名为'my-model-{global_step}.meta'.
            saver.save(sess, 'my-model', global_step=step)

    二、载入模型

    with tf.Session() as sess:
      new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta')
      new_saver.restore(sess, 'my-save-dir/my-model-10000')
      # tf.get_collection() 返回一个list. 但是这里只要第一个参数即可
      y = tf.get_collection('pred_network')[0]
    
      graph = tf.get_default_graph()
    
      # 因为y中有placeholder,所以sess.run(y)的时候还需要用实际待预测的样本以及相应的参数来填充这些placeholder,而这些需要通过graph的get_operation_by_name方法来获取。
      input_x = graph.get_operation_by_name('input_x').outputs[0]
      keep_prob = graph.get_operation_by_name('keep_prob').outputs[0]
    
      # 使用y进行预测  
      sess.run(y, feed_dict={input_x:....,  keep_prob:1.0})

    原文链接:https://blog.csdn.net/Touch_Dream/article/details/79179132

  • 相关阅读:
    Pascal 语言中的关键字及保留字
    单元文件结构
    在 case 语句中使用字符串-转
    程序流程的辅助控制-转
    XE版本 InputQuery 可以同时填多个输入值
    转:Delphi 6 实用函数
    转:Delphi 函数大全
    d 属性: 赋予字段执行动作的能力
    Json格式示意图
    转:虚拟方法跳过父类继承调用祖父类的代码 --值得试一试
  • 原文地址:https://www.cnblogs.com/h694879357/p/15398287.html
Copyright © 2011-2022 走看看