zoukankan      html  css  js  c++  java
  • C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)

    前面八章介绍了 C++11 并发编程的基础(抱歉哈,第五章-第八章还在草稿中),本文将综合运用 C++11 中的新的基础设施(主要是多线程、锁、条件变量)来阐述一个经典问题——生产者消费者模型,并给出完整的解决方案。

    生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源。本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模型,多生产者-单消费者模型,多生产者-多消费者模型,我会给出四种情况下的 C++11 并发解决方案,如果文中出现了错误或者你对代码有异议,欢迎交流 ;-)。

    单生产者-单消费者模型

    顾名思义,单生产者-单消费者模型中只有一个生产者和一个消费者,生产者不停地往产品库中放入产品,消费者则从产品库中取走产品,产品库容积有限制,只能容纳一定数目的产品,如果生产者生产产品的速度过快,则需要等待消费者取走产品之后,产品库不为空才能继续往产品库中放置新的产品,相反,如果消费者取走产品的速度过快,则可能面临产品库中没有产品可使用的情况,此时需要等待生产者放入一个产品后,消费者才能继续工作。C++11实现单生产者单消费者模型的代码如下:

    #include <unistd.h>
    
    #include <cstdlib>
    #include <condition_variable>
    #include <iostream>
    #include <mutex>
    #include <thread>
    
    static const int kItemRepositorySize  = 10; // Item buffer size.
    static const int kItemsToProduce  = 1000;   // How many items we plan to produce.
    
    struct ItemRepository {
        int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
        size_t read_position; // 消费者读取产品位置.
        size_t write_position; // 生产者写入产品位置.
        std::mutex mtx; // 互斥量,保护产品缓冲区
        std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
        std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
    } gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量.
    
    typedef struct ItemRepository ItemRepository;
    
    
    void ProduceItem(ItemRepository *ir, int item)
    {
        std::unique_lock<std::mutex> lock(ir->mtx);
        while(((ir->write_position + 1) % kItemRepositorySize)
            == ir->read_position) { // item buffer is full, just wait here.
            std::cout << "Producer is waiting for an empty slot...
    ";
            (ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
        }
    
        (ir->item_buffer)[ir->write_position] = item; // 写入产品.
        (ir->write_position)++; // 写入位置后移.
    
        if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
            ir->write_position = 0;
    
        (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
        lock.unlock(); // 解锁.
    }
    
    int ConsumeItem(ItemRepository *ir)
    {
        int data;
        std::unique_lock<std::mutex> lock(ir->mtx);
        // item buffer is empty, just wait here.
        while(ir->write_position == ir->read_position) {
            std::cout << "Consumer is waiting for items...
    ";
            (ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
        }
    
        data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
        (ir->read_position)++; // 读取位置后移
    
        if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
            ir->read_position = 0;
    
        (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
        lock.unlock(); // 解锁.
    
        return data; // 返回产品.
    }
    
    
    void ProducerTask() // 生产者任务
    {
        for (int i = 1; i <= kItemsToProduce; ++i) {
            // sleep(1);
            std::cout << "Produce the " << i << "^th item..." << std::endl;
            ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
        }
    }
    
    void ConsumerTask() // 消费者任务
    {
        static int cnt = 0;
        while(1) {
            sleep(1);
            int item = ConsumeItem(&gItemRepository); // 消费一个产品.
            std::cout << "Consume the " << item << "^th item" << std::endl;
            if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
        }
    }
    
    void InitItemRepository(ItemRepository *ir)
    {
        ir->write_position = 0; // 初始化产品写入位置.
        ir->read_position = 0; // 初始化产品读取位置.
    }
    
    int main()
    {
        InitItemRepository(&gItemRepository);
        std::thread producer(ProducerTask); // 创建生产者线程.
        std::thread consumer(ConsumerTask); // 创建消费之线程.
        producer.join();
        consumer.join();
    }

     单生产者-多消费者模型

    与单生产者和单消费者模型不同的是,单生产者-多消费者模型中可以允许多个消费者同时从产品库中取走产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护消费者取走产品的计数器,代码如下:

    #include <unistd.h>
    
    #include <cstdlib>
    #include <condition_variable>
    #include <iostream>
    #include <mutex>
    #include <thread>
    
    static const int kItemRepositorySize  = 4; // Item buffer size.
    static const int kItemsToProduce  = 10;   // How many items we plan to produce.
    
    struct ItemRepository {
        int item_buffer[kItemRepositorySize];
        size_t read_position;
        size_t write_position;
        size_t item_counter;
        std::mutex mtx;
        std::mutex item_counter_mtx;
        std::condition_variable repo_not_full;
        std::condition_variable repo_not_empty;
    } gItemRepository;
    
    typedef struct ItemRepository ItemRepository;
    
    
    void ProduceItem(ItemRepository *ir, int item)
    {
        std::unique_lock<std::mutex> lock(ir->mtx);
        while(((ir->write_position + 1) % kItemRepositorySize)
            == ir->read_position) { // item buffer is full, just wait here.
            std::cout << "Producer is waiting for an empty slot...
    ";
            (ir->repo_not_full).wait(lock);
        }
    
        (ir->item_buffer)[ir->write_position] = item;
        (ir->write_position)++;
    
        if (ir->write_position == kItemRepositorySize)
            ir->write_position = 0;
    
        (ir->repo_not_empty).notify_all();
        lock.unlock();
    }
    
    int ConsumeItem(ItemRepository *ir)
    {
        int data;
        std::unique_lock<std::mutex> lock(ir->mtx);
        // item buffer is empty, just wait here.
        while(ir->write_position == ir->read_position) {
            std::cout << "Consumer is waiting for items...
    ";
            (ir->repo_not_empty).wait(lock);
        }
    
        data = (ir->item_buffer)[ir->read_position];
        (ir->read_position)++;
    
        if (ir->read_position >= kItemRepositorySize)
            ir->read_position = 0;
    
        (ir->repo_not_full).notify_all();
        lock.unlock();
    
        return data;
    }
    
    
    void ProducerTask()
    {
        for (int i = 1; i <= kItemsToProduce; ++i) {
            // sleep(1);
            std::cout << "Producer thread " << std::this_thread::get_id()
                << " producing the " << i << "^th item..." << std::endl;
            ProduceItem(&gItemRepository, i);
        }
        std::cout << "Producer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void ConsumerTask()
    {
        bool ready_to_exit = false;
        while(1) {
            sleep(1);
            std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
            if (gItemRepository.item_counter < kItemsToProduce) {
                int item = ConsumeItem(&gItemRepository);
                ++(gItemRepository.item_counter);
                std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is consuming the " << item << "^th item" << std::endl;
            } else ready_to_exit = true;
            lock.unlock();
            if (ready_to_exit == true) break;
        }
        std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void InitItemRepository(ItemRepository *ir)
    {
        ir->write_position = 0;
        ir->read_position = 0;
        ir->item_counter = 0;
    }
    
    int main()
    {
        InitItemRepository(&gItemRepository);
        std::thread producer(ProducerTask);
        std::thread consumer1(ConsumerTask);
        std::thread consumer2(ConsumerTask);
        std::thread consumer3(ConsumerTask);
        std::thread consumer4(ConsumerTask);
    
        producer.join();
        consumer1.join();
        consumer2.join();
        consumer3.join();
        consumer4.join();
    }

     多生产者-单消费者模型

    与单生产者和单消费者模型不同的是,多生产者-单消费者模型中可以允许多个生产者同时向产品库中放入产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护生产者放入产品的计数器,代码如下:

    #include <unistd.h>
    
    #include <cstdlib>
    #include <condition_variable>
    #include <iostream>
    #include <mutex>
    #include <thread>
    
    static const int kItemRepositorySize  = 4; // Item buffer size.
    static const int kItemsToProduce  = 10;   // How many items we plan to produce.
    
    struct ItemRepository {
        int item_buffer[kItemRepositorySize];
        size_t read_position;
        size_t write_position;
        size_t item_counter;
        std::mutex mtx;
        std::mutex item_counter_mtx;
        std::condition_variable repo_not_full;
        std::condition_variable repo_not_empty;
    } gItemRepository;
    
    typedef struct ItemRepository ItemRepository;
    
    
    void ProduceItem(ItemRepository *ir, int item)
    {
        std::unique_lock<std::mutex> lock(ir->mtx);
        while(((ir->write_position + 1) % kItemRepositorySize)
            == ir->read_position) { // item buffer is full, just wait here.
            std::cout << "Producer is waiting for an empty slot...
    ";
            (ir->repo_not_full).wait(lock);
        }
    
        (ir->item_buffer)[ir->write_position] = item;
        (ir->write_position)++;
    
        if (ir->write_position == kItemRepositorySize)
            ir->write_position = 0;
    
        (ir->repo_not_empty).notify_all();
        lock.unlock();
    }
    
    int ConsumeItem(ItemRepository *ir)
    {
        int data;
        std::unique_lock<std::mutex> lock(ir->mtx);
        // item buffer is empty, just wait here.
        while(ir->write_position == ir->read_position) {
            std::cout << "Consumer is waiting for items...
    ";
            (ir->repo_not_empty).wait(lock);
        }
    
        data = (ir->item_buffer)[ir->read_position];
        (ir->read_position)++;
    
        if (ir->read_position >= kItemRepositorySize)
            ir->read_position = 0;
    
        (ir->repo_not_full).notify_all();
        lock.unlock();
    
        return data;
    }
    
    void ProducerTask()
    {
        bool ready_to_exit = false;
        while(1) {
            sleep(1);
            std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
            if (gItemRepository.item_counter < kItemsToProduce) {
                ++(gItemRepository.item_counter);
                ProduceItem(&gItemRepository, gItemRepository.item_counter);
                std::cout << "Producer thread " << std::this_thread::get_id()
                    << " is producing the " << gItemRepository.item_counter
                    << "^th item" << std::endl;
            } else ready_to_exit = true;
            lock.unlock();
            if (ready_to_exit == true) break;
        }
        std::cout << "Producer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void ConsumerTask()
    {
        static int item_consumed = 0;
        while(1) {
            sleep(1);
            ++item_consumed;
            if (item_consumed <= kItemsToProduce) {
                int item = ConsumeItem(&gItemRepository);
                std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is consuming the " << item << "^th item" << std::endl;
            } else break;
        }
        std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void InitItemRepository(ItemRepository *ir)
    {
        ir->write_position = 0;
        ir->read_position = 0;
        ir->item_counter = 0;
    }
    
    int main()
    {
        InitItemRepository(&gItemRepository);
        std::thread producer1(ProducerTask);
        std::thread producer2(ProducerTask);
        std::thread producer3(ProducerTask);
        std::thread producer4(ProducerTask);
        std::thread consumer(ConsumerTask);
    
        producer1.join();
        producer2.join();
        producer3.join();
        producer4.join();
        consumer.join();
    }

    多生产者-多消费者模型

    该模型可以说是前面两种模型的综合,程序需要维护两个计数器,分别是生产者已生产产品的数目和消费者已取走产品的数目。另外也需要保护产品库在多个生产者和多个消费者互斥地访问。

    代码如下:

    #include <unistd.h>
    
    #include <cstdlib>
    #include <condition_variable>
    #include <iostream>
    #include <mutex>
    #include <thread>
    
    static const int kItemRepositorySize  = 4; // Item buffer size.
    static const int kItemsToProduce  = 10;   // How many items we plan to produce.
    
    struct ItemRepository {
        int item_buffer[kItemRepositorySize];
        size_t read_position;
        size_t write_position;
        size_t produced_item_counter;
        size_t consumed_item_counter;
        std::mutex mtx;
        std::mutex produced_item_counter_mtx;
        std::mutex consumed_item_counter_mtx;
        std::condition_variable repo_not_full;
        std::condition_variable repo_not_empty;
    } gItemRepository;
    
    typedef struct ItemRepository ItemRepository;
    
    
    void ProduceItem(ItemRepository *ir, int item)
    {
        std::unique_lock<std::mutex> lock(ir->mtx);
        while(((ir->write_position + 1) % kItemRepositorySize)
            == ir->read_position) { // item buffer is full, just wait here.
            std::cout << "Producer is waiting for an empty slot...
    ";
            (ir->repo_not_full).wait(lock);
        }
    
        (ir->item_buffer)[ir->write_position] = item;
        (ir->write_position)++;
    
        if (ir->write_position == kItemRepositorySize)
            ir->write_position = 0;
    
        (ir->repo_not_empty).notify_all();
        lock.unlock();
    }
    
    int ConsumeItem(ItemRepository *ir)
    {
        int data;
        std::unique_lock<std::mutex> lock(ir->mtx);
        // item buffer is empty, just wait here.
        while(ir->write_position == ir->read_position) {
            std::cout << "Consumer is waiting for items...
    ";
            (ir->repo_not_empty).wait(lock);
        }
    
        data = (ir->item_buffer)[ir->read_position];
        (ir->read_position)++;
    
        if (ir->read_position >= kItemRepositorySize)
            ir->read_position = 0;
    
        (ir->repo_not_full).notify_all();
        lock.unlock();
    
        return data;
    }
    
    void ProducerTask()
    {
        bool ready_to_exit = false;
        while(1) {
            sleep(1);
            std::unique_lock<std::mutex> lock(gItemRepository.produced_item_counter_mtx);
            if (gItemRepository.produced_item_counter < kItemsToProduce) {
                ++(gItemRepository.produced_item_counter);
                ProduceItem(&gItemRepository, gItemRepository.produced_item_counter);
                std::cout << "Producer thread " << std::this_thread::get_id()
                    << " is producing the " << gItemRepository.produced_item_counter
                    << "^th item" << std::endl;
            } else ready_to_exit = true;
            lock.unlock();
            if (ready_to_exit == true) break;
        }
        std::cout << "Producer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void ConsumerTask()
    {
        bool ready_to_exit = false;
        while(1) {
            sleep(1);
            std::unique_lock<std::mutex> lock(gItemRepository.consumed_item_counter_mtx);
            if (gItemRepository.consumed_item_counter < kItemsToProduce) {
                int item = ConsumeItem(&gItemRepository);
                ++(gItemRepository.consumed_item_counter);
                std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is consuming the " << item << "^th item" << std::endl;
            } else ready_to_exit = true;
            lock.unlock();
            if (ready_to_exit == true) break;
        }
        std::cout << "Consumer thread " << std::this_thread::get_id()
                    << " is exiting..." << std::endl;
    }
    
    void InitItemRepository(ItemRepository *ir)
    {
        ir->write_position = 0;
        ir->read_position = 0;
        ir->produced_item_counter = 0;
        ir->consumed_item_counter = 0;
    }
    
    int main()
    {
        InitItemRepository(&gItemRepository);
        std::thread producer1(ProducerTask);
        std::thread producer2(ProducerTask);
        std::thread producer3(ProducerTask);
        std::thread producer4(ProducerTask);
    
        std::thread consumer1(ConsumerTask);
        std::thread consumer2(ConsumerTask);
        std::thread consumer3(ConsumerTask);
        std::thread consumer4(ConsumerTask);
    
        producer1.join();
        producer2.join();
        producer3.join();
        producer4.join();
    
        consumer1.join();
        consumer2.join();
        consumer3.join();
        consumer4.join();
    }

     另外,所有例子的代码(包括前面一些指南的代码均放在github上),希望对大家学习 C++11 多线程并发有所帮助。

  • 相关阅读:
    插入与归并(python)(原创)
    同一环境下新建Standby RAC库
    配置Server Side TAF
    RAC禁用DRM特性
    Oracle获取数据库中的对象创建语句
    SQL Tuning 基础概述10
    Oracle数据块损坏的恢复实例
    Oracle的FIXED
    Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part2:clusterware安装和升级
    Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part3:db安装和升级
  • 原文地址:https://www.cnblogs.com/haippy/p/3252092.html
Copyright © 2011-2022 走看看