zoukankan      html  css  js  c++  java
  • Intersection(poj)

    Intersection
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 13140   Accepted: 3424

    Description

    You are to write a program that has to decide whether a given line segment intersects a given rectangle.

    An example:
    line: start point: (4,9)
    end point: (11,2)
    rectangle: left-top: (1,5)
    right-bottom: (7,1)


    Figure 1: Line segment does not intersect rectangle

    The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

    Input

    The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format:
    xstart ystart xend yend xleft ytop xright ybottom

    where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

    Output

    For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

    Sample Input

    1
    4 9 11 2 1 5 7 1

    Sample Output

    F
    题解:判断直线与矩形是否有公共点:a=y2-y1;b=x1-x2;c=x2*y1-x1*y2;
    代码:
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<cstring>
     6 using namespace std;
     7 const int INF=0x3f3f3f3f;
     8 const double PI=acos(-1.0);
     9 typedef long long LL;
    10 struct Node{
    11     int x,y;
    12 }s,e,a,d;
    13 int m,n,q;
    14 int count(int x,int y){
    15     return m*x+n*y+q;
    16 }
    17 int main(){
    18     int T;
    19     scanf("%d",&T);
    20     while(T--){
    21         scanf("%d%d%d%d%d%d%d%d",&s.x,&s.y,&e.x,&e.y,&a.x,&a.y,&d.x,&d.y);
    22         if(a.x>d.x){
    23             int temp=a.x;
    24             a.x=d.x;
    25             d.x=temp;
    26         }
    27         if(a.y<d.y){
    28             int temp=a.y;
    29             a.y=d.y;
    30             d.y=temp;
    31         }
    32         m=e.y-s.y;
    33         n=s.x-e.x;
    34         q=e.x*s.y-s.x*e.y;
    35         if(count(a.x,a.y)*count(d.x,d.y)>0&&count(a.x,d.y)*count(d.x,a.y)>0){
    36             puts("F");continue;
    37         }
    38         if((s.x<a.x&&e.x<a.x)||(s.x>d.x&&e.x>d.x)||(s.y>a.y&&e.y>a.y)||(s.y<d.y&&e.y<d.y))//检查是否包含
    39             puts("F");
    40         else puts("T");
    41     }
    42     return 0;
    43 }
  • 相关阅读:
    163.扩展User模型-一对一方式扩展
    162.扩展User模型-使用Proxy模型
    161.内置User模型的基本使用
    160.验证和授权系统的概述
    159.SQL注入的实现和防御措施
    OS课程 ucore_lab2实验报告
    IdentityServer4专题之七:Authorization Code认证模式
    IdentityServer4专题之六:Resource Owner Password Credentials
    IdentityServer4专题之五:OpenID Connect及其Client Credentials流程模式
    IdentityServer4专题之四:Authorization Endpoint、Token Endpoint、scope、Access Token和Refresh Token、授权服务器发生错误
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4921536.html
Copyright © 2011-2022 走看看