zoukankan      html  css  js  c++  java
  • Intersection(poj)

    Intersection
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 13140   Accepted: 3424

    Description

    You are to write a program that has to decide whether a given line segment intersects a given rectangle.

    An example:
    line: start point: (4,9)
    end point: (11,2)
    rectangle: left-top: (1,5)
    right-bottom: (7,1)


    Figure 1: Line segment does not intersect rectangle

    The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

    Input

    The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format:
    xstart ystart xend yend xleft ytop xright ybottom

    where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

    Output

    For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

    Sample Input

    1
    4 9 11 2 1 5 7 1

    Sample Output

    F
    题解:判断直线与矩形是否有公共点:a=y2-y1;b=x1-x2;c=x2*y1-x1*y2;
    代码:
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cmath>
     5 #include<cstring>
     6 using namespace std;
     7 const int INF=0x3f3f3f3f;
     8 const double PI=acos(-1.0);
     9 typedef long long LL;
    10 struct Node{
    11     int x,y;
    12 }s,e,a,d;
    13 int m,n,q;
    14 int count(int x,int y){
    15     return m*x+n*y+q;
    16 }
    17 int main(){
    18     int T;
    19     scanf("%d",&T);
    20     while(T--){
    21         scanf("%d%d%d%d%d%d%d%d",&s.x,&s.y,&e.x,&e.y,&a.x,&a.y,&d.x,&d.y);
    22         if(a.x>d.x){
    23             int temp=a.x;
    24             a.x=d.x;
    25             d.x=temp;
    26         }
    27         if(a.y<d.y){
    28             int temp=a.y;
    29             a.y=d.y;
    30             d.y=temp;
    31         }
    32         m=e.y-s.y;
    33         n=s.x-e.x;
    34         q=e.x*s.y-s.x*e.y;
    35         if(count(a.x,a.y)*count(d.x,d.y)>0&&count(a.x,d.y)*count(d.x,a.y)>0){
    36             puts("F");continue;
    37         }
    38         if((s.x<a.x&&e.x<a.x)||(s.x>d.x&&e.x>d.x)||(s.y>a.y&&e.y>a.y)||(s.y<d.y&&e.y<d.y))//检查是否包含
    39             puts("F");
    40         else puts("T");
    41     }
    42     return 0;
    43 }
  • 相关阅读:
    Linux命令行工具之pidstat命令
    Linux命令行工具之vmstat命令
    进程的状态与转换
    curl常用命令
    Linux常用命令
    TCP TIME_WAIT和CLOSE_WAIT
    OSI参考模型与TCP/IP参考模型与TCP/IP协议栈
    限流算法
    正向代理和反向代理
    oracle全量、增量备份
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4921536.html
Copyright © 2011-2022 走看看