zoukankan      html  css  js  c++  java
  • 第七届河南省赛H.Rectangles(lis)

    10396: H.Rectangles

    Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 229  Solved: 33 [Submit][Status][Web Board]

    Description

    Given N (4 <= N <= 100)  rectangles and the lengths of their sides ( integers in the range 1..1,000), write a program that finds the maximum K for which there is a sequence of K of the given rectangles that can "nest", (i.e., some sequence P1, P2, ..., Pk, such that P1 can completely fit into P2, P2 can completely fit into P3, etc.).

     

    A rectangle fits inside another rectangle if one of its sides is strictly smaller than the other rectangle's and the remaining side is no larger.  If two rectangles are identical they are considered not to fit into each other.  For example, a 2*1 rectangle fits in a 2*2 rectangle, but not in another 2*1 rectangle.

     

    The list can be created from rectangles in any order and in either orientation.

    Input

    The first line of input gives a single integer, 1 ≤ T ≤10,  the number of test cases. Then follow, for each test case

    * Line 1:       a integer N ,  Given the number ofrectangles  N<=100

    * Lines 2..N+1:  Each line contains two space-separated integers  X  Y,  the sides of the respective rectangle.   1<= X , Y<=5000

    Output

    Output for each test case , a single line with a integer  K ,  the length of the longest sequence of fitting rectangles.

    Sample Input

    1
    4
    8 14
    16 28
    29 12
    14 8
    

    Sample Output

    2

    HINT

     

    Source

    第七届河南省赛

    题解:矩形嵌套数目,只需要把x从小到大排列,找lis就好了;注意x要比y小,lis要upper;

    代码:

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    using namespace std;
    #define mem(x,y) memset(x,y,sizeof(x))
    #define SI(x) scanf("%d",&x)
    #define SL(x) scanf("%lld",&x)
    #define  PI(x) printf("%d",x)
    #define  PL(x) printf("%lld",x)
    #define P_ printf(" ")
    const int INF=0x3f3f3f3f;
    const double PI=acos(-1.0);
    typedef long long LL;
    struct Node{
    	int x,y;
    	friend bool operator < (Node a,Node b){
    		if(a.x!=b.x)return a.x<b.x;
    		else return a.y<b.y;
    	}
    };
    Node d[110],dt[110];
    int main(){
    	int T,N;
    	SI(T);
    	while(T--){
    		SI(N);
    		int x,y;
    		for(int i=0;i<N;i++){
    			scanf("%d%d",&x,&y);
    			d[i].x=min(x,y);d[i].y=max(x,y);
    		}
    		sort(d,d+N);
    		int k=1;
    		dt[0].x=d[0].x;dt[0].y=d[0].y;
    		if(N==0){
    			puts("0");continue;
    		}
    		for(int i=1;i<N;i++){
    			while(d[i].x==d[i-1].x&&d[i].y==d[i-1].y)i++;
    			dt[k++]=d[i];
    		}
    		/*for(int i=0;i<k;i++){
    			printf("%d %d
    ",dt[i].x,dt[i].y);
    		}*/
    		vector<int>vec;
    		for(int i=0;i<k;i++){
    			if(upper_bound(vec.begin(),vec.end(),dt[i].y)==vec.end())
    				vec.push_back(dt[i].y);
    			else *upper_bound(vec.begin(),vec.end(),dt[i].y)=dt[i].y;
    		}
    		
    		printf("%d
    ",vec.size());
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    L1-049 天梯赛座位分配​​​​​​​
    L1-046 整除光棍 大数除法
    天梯赛 L1-043 阅览室
    Hdu 1022 Train Problem I 栈
    蓝桥杯 历届试题 格子刷油漆  (动态规划)
    第九届蓝桥杯省赛真题 日志统计
    2018年第九届蓝桥杯第7题 螺旋折线
    2018年第九届蓝桥杯省赛 递增三元组
    蓝桥杯 历届试题 高僧斗法  (尼姆博弈)
    K-th Number
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5093599.html
Copyright © 2011-2022 走看看