zoukankan      html  css  js  c++  java
  • Beauty of Array(模拟)

    M - M
    Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Description

    SAT was the first known NP-complete problem. The problem remains NP-complete even if all expressions are written in conjunctive normal form with 3 variables per clause (3-CNF), yielding the 3-SAT problem. A K-SATproblem can be described as follows:

    There are n persons, and m objects. Each person makes K wishes, for each of these wishes either he wants to take an object or he wants to reject an object. You have to take a subset of the objects such that every person is happy. A person is happy if at least one of his K wishes is kept. For example, there are 3 persons, 4 objects, and K = 2, and

    Person 1 says, "take object 1 or reject 2."

    Person 2 says, "take object 3 or 4."

    Person 3 says, "reject object 3 or 1."

    So, if we take object 1 2 3, then it is not a valid solution, since person 3 becomes unhappy. But if we take 1 2 4 then everyone becomes happy. If we take only 4, it's also a valid solution. Now you are given the information about the persons' wishes and the solution we are currently thinking. You have to say whether the solution is correct or not.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing three integers nmK (1 ≤ n, m, K ≤ 30). Each of the next nlines contains K space separated integers where the ith line denotes the wishes of the ith person. Each of the integers in a line will be either positive or negative. Positive means the person wants the object in the solution; negative means the person doesn't want that in the solution. You can assume that the absolute value of each of the integers will lie between 1 and m.

    The next line contains an integer p (0 ≤ p ≤ m) denoting the number of integers in the solution, followed byp space separated integers each between 1 and m, denoting the solution. That means the objects we have taken as solution set.

    Output

    For each case, print the case number and 'Yes' if the solution is valid or 'No' otherwise.

    Sample Input

    2

    3 4 2

    +1 -2

    +3 +4

    -3 -1

    1 4

    1 5 3

    +1 -2 +4

    2 2 5

    Sample Output

    Case 1: Yes

    Case 2: No

    题解:n个人找对象,对象从1--m,负数代表不要,正数代表要;现在给一组数,问是否满足所有人的意愿;

    代码:

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<set>
    using namespace std;
    int mp[50][50];
    
    int vis[1010];
    int p;
    int n, m, k;
    set<int>st;
    bool js(){
        for(int i = 1; i <= n; i++){
            int flot  = 0;
            for(int j = 1; j <= k; j++){
                if(st.count(mp[i][j])){
                    flot = 1;
                    break;
                }
            }
            if(!flot)return false;
        }
        return true;
    }
    int main(){
        int T, kase = 0;
        scanf("%d", &T);
        while(T--){
            scanf("%d%d%d", &n, &m, &k);
            for(int i = 1; i <= n; i++){
                for(int j = 1; j <= k; j++){
                    scanf("%d", &mp[i][j]);
                }
            }
            scanf("%d", &p);
            st.clear();
            memset(vis, 0, sizeof(vis));
            int x;
            for(int i = 1; i <= p; i++){
                scanf("%d", &x);
                st.insert(x);
                vis[x] = 1;
            }
            for(int i = 1; i<= m; i++){
                if(!vis[i])st.insert(-i);
            }
            if(js())printf("Case %d: Yes
    ", ++kase);
            else
                printf("Case %d: No
    ", ++kase);
        }
        return 0;
    }
  • 相关阅读:
    常用模块介绍
    正则表达式/re模块
    模块简介/模块的导入/模块的查找顺序/绝对导入和相对导入/软件开发目录规范
    迭代器/for循环本质/生成器/常用内置方法
    函数递归/二分法/列表,字典生成式/三元表达式/匿名函数/内置函数
    闭包函数/装饰器
    函数对象/函数的嵌套定义与调用/名称空间和作用域
    初识函数
    文件处理/光标移动/实时检测
    7-5字符编码和文件处理
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5451113.html
Copyright © 2011-2022 走看看