zoukankan      html  css  js  c++  java
  • Non-negative Partial Sums(单调队列)

    Non-negative Partial Sums

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2622    Accepted Submission(s): 860


    Problem Description
    You are given a sequence of n numbers a0,..., an-1. A cyclic shift by k positions (0<=k<=n-1) results in the following sequence: ak ak+1,..., an-1, a0, a1,..., ak-1. How many of the n cyclic shifts satisfy the condition that the sum of the fi rst i numbers is greater than or equal to zero for all i with 1<=i<=n?
     
    Input
    Each test case consists of two lines. The fi rst contains the number n (1<=n<=106), the number of integers in the sequence. The second contains n integers a0,..., an-1 (-1000<=ai<=1000) representing the sequence of numbers. The input will finish with a line containing 0.
     
    Output
    For each test case, print one line with the number of cyclic shifts of the given sequence which satisfy the condition stated above.
     
    Sample Input
    3 2 2 1 3 -1 1 1 1 -1 0
     
    Sample Output
    3 2 0
    题解:给n个数,a0,a1,...an,求ai,ai+1,...an,a1,a2,...ai-1这样的排列种数,使得所有的前k(1<=k<=n)个的和都大于等于0;

    求前缀和,加倍序列。

    要满足前k个和都>=0,只需最小值>=0,所以用单调队列维护一个最小的前缀和sum[i],(i>=j-n+1),这样就保证了sum[j]-sum[i]最大,所以区间【j-n+1,i]最小。

    维护一个单调队列代表终止位置的最小值从小到大;
    代码:
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    const int MAXN = 1e6 + 100;
    int num[MAXN];
    int sum[MAXN];
    int q[MAXN];
    int main(){
        int n;
        while(~scanf("%d", &n), n){
            sum[0] = 0;
            for(int i = 1; i <= n; i++){
                scanf("%d", num + i);
                sum[i] = sum[i - 1] + num[i];
            }
            for(int i = n + 1; i <= 2*n; i++)
                sum[i] = sum[i - 1] + num[i - n];
           // for(int i = 0; i <= 2*n; i++)
           //     printf("%d ", sum[i]);puts("");
            int head = 0, tail = -1, ans = 0;
            for(int i = 1; i <= 2 * n; i++){
                while(head <= tail && sum[i] < sum[q[tail]])tail--;
                q[++tail] = i;
              //  printf("i = %d %d %d
    ", i, sum[q[head]], sum[i - n]);
                if(i > n && sum[q[head]] - sum[i - n] >= 0)ans++;
                while(head <= tail && q[head] <= i - n)head++;
            }
            printf("%d
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    pycharm中使用redis模块入门
    ubuntu sudo apt-get update与sudo apt-get upgrade的作用及区别,以及python pip的安装
    pycharm修改快捷键
    python2.7.5安装docker-compose的方法
    (二)影响持续交付的因素
    (一)持续交付的定义与价值
    CentOS6的/etc/rc.local不执行的问题解决
    Redis集群进阶之路
    好文收集(长期更新)
    MongoDB如何释放空闲空间?
  • 原文地址:https://www.cnblogs.com/handsomecui/p/5532419.html
Copyright © 2011-2022 走看看