zoukankan      html  css  js  c++  java
  • python之路day14--列表生成式、生成器generator、生成器并行

    列表生成式

    列表生成式阅读量: 44
     

    现在有个需求,现有列表a=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式

    二逼青年版

    生成一个新列表b,遍历列表a,把每个值加1后存在b里,最后再把a=b, 这样二逼的原因不言而喻,生成了新列表,浪费了内存空间。

    >>> a
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> b = []
    >>> for i in a:b.append(i+1)
    ... 
    >>> b
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a = b
    >>> a
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    

    普通青年版

    毫无新意

    a = [1,3,4,6,7,7,8,9,11]
    
    for index,i in enumerate(a):
        a[index] +=1
    print(a)

    略屌青年版

    >>> a
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a = map(lambda x:x+1, a)
    >>> a
    <map object at 0x101d2c630>
    >>> for i in a:print(i)
    ... 
    3
    5
    7
    9
    11
    

    装逼青年版

    >>> a = [i+1 for i in range(10)]
    >>> a
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    

    这样的写法就叫做列表生成式,有什么用呢?装逼用,哈哈,写出来显的高级,效果跟上面的都一样哈。

    生成器generator

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。比如我要循环100万次,按py的语法,for i in range(1000000)会先生成100万个值的列表。但是循环到第50次时,我就不想继续了,就退出了。但是90多万的列表元素就白为你提前生成了。 

    for i in range(1000000):
        if i == 50: 
            break
        print(i)
    

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?

    像上面这个循环,每次循环只是+1而已,我们完全可以写一个算法,让他执行一次就自动+1,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算后面元素的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> [x * x for x in range(10)]
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> 
    >>> (x * x for x in range(10))
    <generator object <genexpr> at 0x101ebc3b8>

    (x*x for x in range(10))生成的就是一个生成器。

    我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    >>> g = (x * x for x in range(10))
    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration

    我们讲过,generator保存的是算法,每次调用next(g)就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

    当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代(遍历)对象:

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)
    ...
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81

    通过for循环来迭代它,就不需要关心StopIteration的错误了。 

    函数生成器

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    实现100以内的斐波那契数代码:

    a,b = 0,1
    n = 0  # 斐波那契数
    while n < 100:
        n = a + b
        a = b # 把b的旧值给到a
        b = n # 新的b = a + b(旧b的值)
        print(n)
    

    改成函数也可以的

    def fib(max):
        a,b = 0,1
        n = 0  # 斐波那契数
        while n < max:
            n = a + b
            a = b # 把b的旧值给到a
            b = n # 新的b = a + b(旧b的值)
            print(n)
    
    fib(100)

    输出 :

    1
    2
    3
    5
    8
    13
    21
    34
    55
    89
    144

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        a,b = 0,1
        n = 0  # 斐波那契数
        while n < max:
            n = a + b
            a = b # 把b的旧值给到a
            b = n # 新的b = a + b(旧b的值)
            #print(n)
            yield n # 程序走到这,就会暂停下来,返回n到函数外面,直到被next方法调用时唤醒
    
    f = fib(100) # 注意这句调用时,函数并不会执行,只有下一次调用next时,函数才会真正执行
    
    print(f)
    print(f.__next__())
    print(f.__next__())
    print(f.__next__())
    print(f.__next__())

    输出

    <generator object fib at 0x101f593b8>
    1
    2
    3
    5

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句暂停并返回数据到函数外,再次被next()调用时从上次返回的yield语句处继续执行

    在上面fib的例子,我们在循环过程中不断调用yield,函数就会不断的中断(暂停)。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    f = fib(100) # 注意这句调用时,函数并不会执行,只有下一次调用next时,函数才会真正执行
    
    for i in f:
        print(i)
    
    
    #输出:
    1
    2
    3
    ...
    ...
    55
    89
    144

    生成器进阶

    def generator():
        print(123)
        content=yield 1
        print('----')
        print(456)
        yield 2
    
    g=generator()
    ret=g.__next__()
    print('**',ret)
    
    ret=g.send('hello,girl~') #send 获取下一个值的效果和next基本一致
    print('**',ret)
    #执行结果如下
    # 123
    # ** 1

    # ---- hello,girl~
    # 456
    # ** 2

    ps:流程(第一调用next,程序走到yield 1,返回值1后暂停,当接下来用send方法给yield生成器传值的时候,content接受到,执行下面代码,直到yield 2,返回值2后结束
    send 获取下一个值的效果和next基本一致
    只是在获取在获取下一个值的时候,给上一个值的位置仅传递一个数据

    send使用注意事项:
    1、要先用一个next方法获取一下,后面才能用send方法
    2、最后一个yield不能接受外部的值
    #实例 获取移动平均值 (输入的数的总和除以个数)
    # 10 20 30 10
    # 10 15 20 17.5
    # 2/ 完美版
    def gen():
        sum = 0
        count = 0
        avg=0
    
        while  True:
            #num=yield
            num = yield avg #这里一致接受send的值,一次调用,返回avg,等待下一次调用才赋值给num
            sum += num
            count += 1
            avg=sum/count
    
    
    g=gen() #拿到一个生成器
    print(g)
    ret1=g.__next__()
    print(ret1)
    avg1=g.send(10) #这杨只能传一个值,yield到最后就没有了,会报错
    print(avg)
    avg2=g.send(20)
    print(avg2)

    并发编程

    虽然我们还没学并发编程,但我们肯定听过cpu 多少核多少核之类的,cpu的多核就是为了可以实现并行运算,让你同时边听歌、边聊qq、边刷知乎。单核的cpu同一时间只能干一个事,所以你用单核电脑同时做好几件事的话,就会变的很慢,因为cpu要在不同程序任务间来回切换。

    通过yield, 我们可以实现单核下并发做多件事的效果。 

    import time
    def consumer(name):
        print("%s 准备吃包子啦!" %name)
        while True:
           baozi = yield  # yield可以接收到外部send传过来的数据并赋值给baozi
    
           print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
    
    
    c = consumer('A')
    c2 = consumer('B')
    c.__next__() # 执行一下next可以使上面的函数走到yield那句。 这样后面的send语法才能生效
    c2.__next__()
    print("----老子开始准备做包子啦!----")
    for i in range(10):
        time.sleep(1)
        print("做了2个包子!")
        c.send(i)  # send的作用=next, 同时还把数据传给了上面函数里的yield
        c2.send(i)
    

    注意:调用send(x)给生成器传值时,必须确保生成器已经执行过一次__next__()调用, 这样会让程序走到yield位置等待外部第2次调用。

     

  • 相关阅读:
    libcurl进行HTTP GET获取JSON数据(转载)
    c/c++ 动态申请数组(转载)
    利用注册表写开机启动程序(转载)
    VC++使用IMAPI调用Outlook邮箱客户端和Foxmail邮箱客户端遇到的问题
    解决Duilib集成CEF浏览器在Win10无法向客户区拖拽文件
    解决往监控目录拖拽文件夹无法监控到的问题
    VC++ 实现修改文件创建、访问、修改时间属性(转载)
    Windows中的时间(SYSTEMTIME和FILETIME) (转载)
    ThinkPHP真正疑难问题笔记
    git版本控制管理实践-4
  • 原文地址:https://www.cnblogs.com/hanfe1/p/10837235.html
Copyright © 2011-2022 走看看