zoukankan      html  css  js  c++  java
  • Python基础:day10

    一、python并发编程之多线程

    1.1 threading模块

    使用方式
    from threading import Thread
    
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    from threading import Thread
    from multiprocessing import  Process
    
    def work(name):
        print('%s say hello' %name)
    
    if __name__ == '__main__':
        t=Thread(target=work,args=('egon',))
        # t=Process(target=work,args=('egon',))
        t.start()
        print('主线程')
    

    1.2 开启线程的两种方式(同Process)

    #方式一
    from threading import Thread
    import time
    def sayhi(name):
        time.sleep(2)
        print('%s say hello' %name)
    
    if __name__ == '__main__':
        t=Thread(target=sayhi,args=('egon',))
        t.start()
        print('主线程')
    
    #方式二
    from threading import Thread
    import time
    class Sayhi(Thread):
        def __init__(self,name):
            super().__init__()
            self.name=name
        def run(self):
            time.sleep(2)
            print('%s say hello' % self.name)
    
    
    if __name__ == '__main__':
        t = Sayhi('egon')
        t.start()
        print('主线程')
    

    1.3 多进程与多线程的区别

    #!/usr/bin/Python
    # -*- coding:utf-8 -*-
    from threading import Thread
    from multiprocessing import Process
    import os
    
    def work():
        print('hello')
    
    if __name__ == '__main__':
        #在主进程下开启线程
        t=Thread(target=work)
        t.start()
        print('主线程/主进程')
    

    多线程并发socket 

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    from socket import *
    from threading import Thread
    def server(ip,port):
    
        s.bind((ip,port))
        s.listen(5)
        while True:
            conn, addr = s.accept()
            print('client',addr)
            t = Thread(target=talk, args=(conn, addr))
            t.start()
    
    def talk(conn,addr): #通信
        try:
            while True:
                res=conn.recv(1024)
                if not res:break
                print('client %s:%s msg:%s' %(addr[0],addr[1],res))
                conn.send(res.upper())
        except Exception:
            pass
        finally:
            conn.close()
    
    if __name__ == '__main__':
        server('127.0.0.1', 8080)

    客户端

    #_*_coding:utf-8_*_
    #!/usr/bin/env python
    
    
    import socket
    
    s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    s.connect(('127.0.0.1',8080))
    
    while True:
        msg=input('>>: ').strip()
        if not msg:continue
    
        s.send(msg.encode('utf-8'))
        data=s.recv(1024)
        print(data)

    多线程文本保存输入内容

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    from threading import Thread
    msg_l=[]
    format_l=[]
    def talk():
        while True:
            msg=input('>>: ').strip()
            if not msg:continue
            msg_l.append(msg)
    
    def format():
        while True:
            if msg_l:
                res=msg_l.pop()
                res=res.upper()
                format_l.append(res)
    
    def save():
        while True:
            if format_l:
                res=format_l.pop()
                with open('db.txt','a',encoding='utf-8') as f:
                    f.write('%s
    ' %res)
    
    if __name__ == '__main__':
        t1=Thread(target=talk)
        t2=Thread(target=format)
        t3=Thread(target=save)
        t1.start()
        t2.start()
        t3.start()

    1.4 线程方法

    Thread实例对象的方法
    # isAlive(): 返回线程是否活动的。 # getName(): 返回线程名。 # setName(): 设置线程名。 threading模块提供的一些方法: # threading.currentThread(): 返回当前的线程变量。 # threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 # threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    n=11111111111111111111111111111111111
    import time
    from threading import Thread
    import threading
    def work():
        time.sleep(2)
        print('%s say hello' %(threading.current_thread().getName()))
    
    
    if __name__ == '__main__':
        t=Thread(target=work)
        # t.setDaemon(True)#设置守护线程随主线程关闭
        t.start()
        t.join()
        print(threading.enumerate()) #当前活跃的线程对象,是一个列表形式
        print(threading.active_count()) #当前活跃的线程数目
        print('主线程',threading.current_thread().getName())
    

    1.5 Python GIL(Global Interpreter Lock)

    '''
    
    定义:
    In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple 
    native threads from executing Python bytecodes at once. This lock is necessary mainly 
    because CPython’s memory management is not thread-safe. (However, since the GIL 
    exists, other features have grown to depend on the guarantees that it enforces.)
    
    '''
    结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
    

    GIL是什么

    首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL。

    那么CPython实现中的GIL又是什么呢?GIL全称Global Interpreter Lock为了避免误导,我们还是来看一下官方给出的解释:

    In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.)

    好吧,是不是看上去很糟糕?一个防止多线程并发执行机器码的一个Mutex,乍一看就是个BUG般存在的全局锁嘛!别急,我们下面慢慢的分析。

    为什么会有GIL

    由于物理上得限制,各CPU厂商在核心频率上的比赛已经被多核所取代。为了更有效的利用多核处理器的性能,就出现了多线程的编程方式,而随之带来的就是线程间数据一致性和状态同步的困难。即使在CPU内部的Cache也不例外,为了有效解决多份缓存之间的数据同步时各厂商花费了不少心思,也不可避免的带来了一定的性能损失。

    Python当然也逃不开,为了利用多核,Python开始支持多线程。而解决多线程之间数据完整性和状态同步的最简单方法自然就是加锁。 于是有了GIL这把超级大锁,而当越来越多的代码库开发者接受了这种设定后,他们开始大量依赖这种特性(即默认python内部对象是thread-safe的,无需在实现时考虑额外的内存锁和同步操作)。

    慢慢的这种实现方式被发现是蛋疼且低效的。但当大家试图去拆分和去除GIL的时候,发现大量库代码开发者已经重度依赖GIL而非常难以去除了。有多难?做个类比,像MySQL这样的“小项目”为了把Buffer Pool Mutex这把大锁拆分成各个小锁也花了从5.5到5.6再到5.7多个大版为期近5年的时间,本且仍在继续。MySQL这个背后有公司支持且有固定开发团队的产品走的如此艰难,那又更何况Python这样核心开发和代码贡献者高度社区化的团队呢?

    所以简单的说GIL的存在更多的是历史原因。如果推到重来,多线程的问题依然还是要面对,但是至少会比目前GIL这种方式会更优雅。

    GIL的影响

    从上文的介绍和官方的定义来看,GIL无疑就是一把全局排他锁。毫无疑问全局锁的存在会对多线程的效率有不小影响。甚至就几乎等于Python是个单线程的程序。
    那么读者就会说了,全局锁只要释放的勤快效率也不会差啊。只要在进行耗时的IO操作的时候,能释放GIL,这样也还是可以提升运行效率的嘛。或者说再差也不会比单线程的效率差吧。理论上是这样,而实际上呢?Python比你想的更糟。

    下面我们就对比下Python在多线程和单线程下得效率对比。测试方法很简单,一个循环1亿次的计数器函数。一个通过单线程执行两次,一个多线程执行。最后比较执行总时间。测试环境为双核的Mac pro。注:为了减少线程库本身性能损耗对测试结果带来的影响,这里单线程的代码同样使用了线程。只是顺序的执行两次,模拟单线程。

    这篇文章透彻的剖析了GIL对python多线程的影响,强烈推荐看一下:http://www.dabeaz.com/python/UnderstandingGIL.pdf 

    复制代码
    #计算密集型
    from threading import Thread
    from multiprocessing import Process
    import os
    import time
    def work():
        res=0
        for i in range(1000000):
            res+=i
    
    if __name__ == '__main__':
        t_l=[]
        start_time=time.time()
        # for i in range(300): #串行
        #     work()
    
        for i in range(300):
            t=Thread(target=work) #在我的机器上,4核cpu,多线程大概15秒
            # t=Process(target=work) #在我的机器上,4核cpu,多进程大概10秒
            t_l.append(t)
            t.start()
    
        for i in t_l:
            i.join()
    
        stop_time=time.time()
        print('run time is %s' %(stop_time-start_time))
    
        print('主线程')
    复制代码
    #I/O密集型
    from threading import Thread
    from multiprocessing import Process
    import time
    import os
    def work():
        time.sleep(2) #模拟I/O操作,可以打开一个文件来测试I/O,与sleep是一个效果
        print(os.getpid())
    
    if __name__ == '__main__':
        t_l=[]
        start_time=time.time()
        for i in range(1000):
            t=Thread(target=work) #耗时大概为2秒
            # t=Process(target=work) #耗时大概为25秒,创建进程的开销远高于线程,而且对于I/O密集型,多cpu根本不管用
            t_l.append(t)
            t.start()
    
        for t in t_l:
            t.join()
        stop_time=time.time()
        print('run time is %s' %(stop_time-start_time))
    复制代码

    关于GIL与Lock的比较请看2.3小节,此处只需知道:有了GIL的存在,同一时刻统一进程中只有一个线程被执行

    听到这里,有的同学立马质问:进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势,也就是说python没用了,php才是最牛逼的语言?

    别着急啊,老娘还没讲完呢。

    要解决这个问题,我们需要在几个点上达成一致:

    1. cpu到底是用来做计算的,还是用来做I/O的?

    1. 多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能

    2. 每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处

    一个工人相当于cpu,此时计算相当于工人在干活,I/O阻塞相当于为工人干活提供所需原材料的过程,工人干活的过程中如果没有原材料了,则工人干活的过程需要停止,直到等待原材料的到来。

    如果你的工厂干的大多数任务都要有准备原材料的过程(I/O密集型),那么你有再多的工人,意义也不大,还不如一个人,在等材料的过程中让工人去干别的活,

    反过来讲,如果你的工厂原材料都齐全,那当然是工人越多,效率越高

    结论:

      对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用

      当然对于一个程序来说,不会是纯计算或者纯I/O,我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程有无用武之地

    分析:

    我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:

    方案一:开启四个进程

    方案二:一个进程下,开启四个线程

    单核情况下,分析结果: 

      如果四个任务是计算密集型,没有多核来并行计算,方案一徒增了创建进程的开销,方案二胜

      如果四个任务是I/O密集型,方案一创建进程的开销大,且进程的切换速度远不如线程,方案二胜

    多核情况下,分析结果:

      如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜

      如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜

    结论:现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。 

     应用:

    多线程用于IO密集型,如socket,爬虫,web

    多进程用于计算密集型,如金融分析

    1.6 同步锁

    锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁:

    1.7 死锁与递归锁

    进程也有死锁与递归锁,在进程那里忘记说了,放到这里一切说了额

    所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    from threading import Thread,Lock,RLock
    import time
    class MyThread(Thread):
        def run(self):
            self.f1()
            self.f2()
        def f1(self):
            mutex.acquire()
            print('33[45m%s 拿到A锁33[0m' %self.name)
            mutex.acquire()
            print('33[43m%s 拿到B锁33[0m' % self.name)
            mutex.release()
            mutex.release()
        def f2(self):
            mutex.acquire()
            time.sleep(5)
            print('33[43m%s 拿到B锁33[0m' % self.name)
            mutex.acquire()
            time.sleep(10)
            print('33[45m%s 拿到A锁33[0m' % self.name)
            mutex.release()
            mutex.release()
    
    if __name__ == '__main__':
        # mutexA=Lock()
        # mutexB=Lock()
        mutex=RLock()
    
        for i in range(20):
            t=MyThread()
            t.start()

    解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

    这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

     mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止

    1.8 信号量Semahpore

    Semaphore管理一个内置的计数器,
    每当调用acquire()时内置计数器-1;
    调用release() 时内置计数器+1;
    计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()

    实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5,控制并发量):

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    from threading import Thread,Semaphore
    import time
    def work(id):
        with sem:
            time.sleep(2)
            print('%s say hello' %id)
    
    if __name__ == '__main__':
        sem=Semaphore(5)
        for i in range(20):
            t=Thread(target=work,args=(i,))
            t.start()
    

     与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程

    1.9  Event、定时器、线程queue

    1.9.1 Event

     同进程的一样,线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就 会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

    event.isSet():返回event的状态值;
    
    event.wait():如果 event.isSet()==False将阻塞线程;
    
    event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
    
    event.clear():恢复event的状态值为False。
    

    可以考虑一种应用场景(仅仅作为说明),例如,我们有多个线程从Redis队列中读取数据来处理,这些线程都要尝试去连接Redis的服务,一般情况下,如果Redis连接不成功,在各个线程的代码中,都会去尝试重新连接。如果我们想要在启动时确保Redis服务正常,才让那些工作线程去连接Redis服务器,那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作:主线程中会去尝试连接Redis服务,如果正常的话,触发事件,各工作线程会尝试连接Redis服务。

    import threading
    import time
    import logging
    
    logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-10s) %(message)s',)
    
    def worker(event):
        logging.debug('Waiting for redis ready...')
        event.wait()
        logging.debug('redis ready, and connect to redis server and do some work [%s]', time.ctime())
        time.sleep(1)
    
    def main():
        readis_ready = threading.Event()
        t1 = threading.Thread(target=worker, args=(readis_ready,), name='t1')
        t1.start()
    
        t2 = threading.Thread(target=worker, args=(readis_ready,), name='t2')
        t2.start()
    
        logging.debug('first of all, check redis server, make sure it is OK, and then trigger the redis ready event')
        time.sleep(3) # simulate the check progress
        readis_ready.set()
    
    if __name__=="__main__":
        main()
    复制代码
    

    mysql

    from threading import Thread,Event
    import threading
    import time,random
    def conn_mysql():
        print('33[42m%s 等待连接mysql。。。33[0m' %threading.current_thread().getName())
        event.wait()
        print('33[42mMysql初始化成功,%s开始连接。。。33[0m' %threading.current_thread().getName())
    
    
    def check_mysql():
        print('33[41m正在检查mysql。。。33[0m')
        time.sleep(random.randint(1,3))
        event.set()
        time.sleep(random.randint(1,3))
    
    if __name__ == '__main__':
        event=Event()
        t1=Thread(target=conn_mysql) #等待连接mysql
        t2=Thread(target=conn_mysql) #等待连接myqsl
        t3=Thread(target=check_mysql) #检查mysql
    
        t1.start()
        t2.start()
        t3.start()
    

    threading.Event的wait方法还接受一个超时参数,默认情况下如果事件一致没有发生,wait方法会一直阻塞下去,而加入这个超时参数之后,如果阻塞时间超过这个参数设定的值之后,wait方法会返回。对应于上面的应用场景,如果Redis服务器一致没有启动,我们希望子线程能够打印一些日志来不断地提醒我们当前没有一个可以连接的Redis服务,我们就可以通过设置这个超时参数来达成这样的目的:

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    from threading import Thread,Event
    import threading
    import time,random
    def conn_mysql():
        while not event.is_set():
            print('33[42m%s 等待连接mysql。。。33[0m' %threading.current_thread().getName())
            event.wait(0.1)
        print('33[42mMysql初始化成功,%s开始连接。。。33[0m' %threading.current_thread().getName())
    
    
    def check_mysql():
        print('33[41m正在检查mysql。。。33[0m')
        time.sleep(random.randint(1,3))
        event.set()
        time.sleep(random.randint(1,3))
    
    if __name__ == '__main__':
        event=Event()
        t1=Thread(target=conn_mysql)
        t2=Thread(target=conn_mysql)
        t3=Thread(target=check_mysql)
    
        t1.start()
        t2.start()
        t3.start()
    

    1.9.2 条件Condition(了解)

    使得线程等待,只有满足某条件时,才释放n个线程

    复制代码
    import threading
     
    def run(n):
        con.acquire()
        con.wait()
        print("run the thread: %s" %n)
        con.release()
     
    if __name__ == '__main__':
     
        con = threading.Condition()
        for i in range(10):
            t = threading.Thread(target=run, args=(i,))
            t.start()
     
        while True:
            inp = input('>>>')
            if inp == 'q':
                break
            con.acquire()
            con.notify(int(inp))
            con.release()
    复制代码
    def condition_func():
    
        ret = False
        inp = input('>>>')
        if inp == '1':
            ret = True
    
        return ret
    
    
    def run(n):
        con.acquire()
        con.wait_for(condition_func)
        print("run the thread: %s" %n)
        con.release()
    
    if __name__ == '__main__':
    
        con = threading.Condition()
        for i in range(10):
            t = threading.Thread(target=run, args=(i,))
            t.start()

    1.9.3 定时器

    定时器,指定n秒后执行某操作

    from threading import Timer
     
     
    def hello():
        print("hello, world")
     
    t = Timer(1, hello)
    t.start()  # after 1 seconds, "hello, world" will be printed
    

    1.9.4 线程queue

    ueue队列 :使用import queue,用法与进程Queue一样

    queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.

    class queue.Queue(maxsize=0) #先进先出
    import queue
    
    q=queue.Queue()
    q.put('first')
    q.put('second')
    q.put('third')
    
    print(q.get())
    print(q.get())
    print(q.get())
    '''
    结果(先进先出):
    first
    second
    third
    '''
    

    class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列  

    import queue
    
    q=queue.PriorityQueue()
    #put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
    q.put((20,'a'))
    q.put((10,'b'))
    q.put((30,'c'))
    
    print(q.get())
    print(q.get())
    print(q.get())
    '''
    结果(数字越小优先级越高,优先级高的优先出队):
    (10, 'b')
    (20, 'a')
    (30, 'c')
    '''
    

    class queue.LifoQueue(maxsize=0) #l后进先出 

    import queue
    
    q=queue.LifoQueue()
    q.put('first')
    q.put('second')
    q.put('third')
    
    print(q.get())
    print(q.get())
    print(q.get())
    '''
    结果(后进先出):
    third
    second
    first
    '''
    

    二、协程

    协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

    需要强调的是:

      1. python的线程属于内核级别的,即由操作系统控制调度(如单线程一旦遇到io就被迫交出cpu执行权限,切换其他线程运行)

      2. 单线程内开启协程,一旦遇到io,从应用程序级别(而非操作系统)控制切换

    对比操作系统控制线程的切换,用户在单线程内控制协程的切换,优点如下:

      1.  协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级

      2. 单线程内就可以实现并发的效果,最大限度地利用cpu

     

    要实现协程,关键在于用户程序自己控制程序切换,切换之前必须由用户程序自己保存协程上一次调用时的状态,如此,每次重新调用时,能够从上次的位置继续执行

    (详细的:协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈)

     

    为此,我们之前已经学习过一种在单线程下可以保存程序运行状态的方法,即yield,我们来简单复习一下:

    1. yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
    2. send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换 

     

     

      

  • 相关阅读:
    第二阶段个人冲刺总结01
    软件工程学习进度表13
    软件工程学习进度表12
    个人博客(09)
    个人博客(07)
    个人博客(08)
    poj1562 DFS入门
    poj3278 BFS入门
    数组单步运算
    十天冲刺
  • 原文地址:https://www.cnblogs.com/hanjialong/p/7118933.html
Copyright © 2011-2022 走看看