zoukankan      html  css  js  c++  java
  • Batch Normalization, Instance Normalization, Layer Normalization图解 Sanny.Liu

    转载:https://becominghuman.ai/all-about-normalization-6ea79e70894b

    This short post highlights the structural nuances between popular normalization techniques employed while training deep neural networks.

    I am hoping that a quick 2 minute glance at this would refresh my memory on the concept, sometime, in the not so distant future.

    Let us establish some notations, that will make the rest of the content, easy to follow. We assume that the activations at any layer would be of the dimensions NxCxHxW (and, of course, in the real number space), where, N = Batch Size, C = Number of Channels (filters) in that layer, H = Height of each activation map, W = Width of each activation map.

             
            Feature Map Dimensions

    Generally, normalization of activations require shifting and scaling the activations by mean and standard deviation respectively. Batch Normalization, Instance Normalization and Layer Normalization differ in the manner these statistics are calculated.

           Normalization
     

    Batch Normalization

    In “Batch Normalization”, mean and variance are calculated for each individual channel across all samples and both spatial dimensions.

     

    Instance Normalization

    In “Instance Normalization”, mean and variance are calculated for each individual channel for each individual sample across both spatial dimensions.

     

    Layer Normalization

    In “Layer Normalization”, mean and variance are calculated for each individual sample across all channels and both spatial dimensions.

     

    I firmly believe that pictures speak louder than words, and I hope this post brings forth the subtle distinctions between several popular normalization techniques.

  • 相关阅读:
    不移除通知的话,出现的bug
    嵌入式-第一季-第14课
    嵌入式-第一季-第13课
    嵌入式-第一季-第12课
    嵌入式-第一季-第11课
    嵌入式-第一季-第10课
    嵌入式-第一季-第9课
    嵌入式-第一季-第8课
    嵌入式-第一季-第7课
    嵌入式-第一季-第6课
  • 原文地址:https://www.cnblogs.com/hansjorn/p/15688105.html
Copyright © 2011-2022 走看看