zoukankan      html  css  js  c++  java
  • Batch Normalization, Instance Normalization, Layer Normalization图解 Sanny.Liu

    转载:https://becominghuman.ai/all-about-normalization-6ea79e70894b

    This short post highlights the structural nuances between popular normalization techniques employed while training deep neural networks.

    I am hoping that a quick 2 minute glance at this would refresh my memory on the concept, sometime, in the not so distant future.

    Let us establish some notations, that will make the rest of the content, easy to follow. We assume that the activations at any layer would be of the dimensions NxCxHxW (and, of course, in the real number space), where, N = Batch Size, C = Number of Channels (filters) in that layer, H = Height of each activation map, W = Width of each activation map.

             
            Feature Map Dimensions

    Generally, normalization of activations require shifting and scaling the activations by mean and standard deviation respectively. Batch Normalization, Instance Normalization and Layer Normalization differ in the manner these statistics are calculated.

           Normalization
     

    Batch Normalization

    In “Batch Normalization”, mean and variance are calculated for each individual channel across all samples and both spatial dimensions.

     

    Instance Normalization

    In “Instance Normalization”, mean and variance are calculated for each individual channel for each individual sample across both spatial dimensions.

     

    Layer Normalization

    In “Layer Normalization”, mean and variance are calculated for each individual sample across all channels and both spatial dimensions.

     

    I firmly believe that pictures speak louder than words, and I hope this post brings forth the subtle distinctions between several popular normalization techniques.

  • 相关阅读:
    2020年北航OO助教工作总结
    OO第四单元——UML及其解析器——总结 暨 OO课程大总结
    OO第三单元——规格化设计与地铁系统——总结
    OO第二单元——电梯调度——总结
    OO第一单元——表达式求导——总结
    try_svg
    字体自适应
    网站使用微软雅黑需要版权吗
    body,td,th {
    input一定要在from里吗
  • 原文地址:https://www.cnblogs.com/hansjorn/p/15688105.html
Copyright © 2011-2022 走看看