zoukankan      html  css  js  c++  java
  • 多任务、多进程、多线程

    多任务
    多线程特点:
    线程的并发是利用cpu上下文的切换(是并发,不是并行)
    多线程执行的顺序是无序的
    多线程共享全局变量
    线程是继承在进程里的,没有进程就没有线程
    GIL全局解释器锁
    只要在进行耗时的IO操作的时候,能释放GIL,所以只要在IO密集型的代码里,用多线程就很合适
    # 无序的,并发的
    import threading
    import  time
    def test1(n):
        time.sleep(1)
        print('task', n)
    for i in range(10):
        t = threading.Thread(target=test1,args=('t-%s' % i,))
        t.start()
    tasktask t-2
    task task t-3
    taskt-1
    t-0
    t-4
    #多线程共享全局变量
    g = 0
    def test1():
        global g
        for i in range(10):
            g += 1
        print(g)
    def test2():
        global g
        for i in range(10):
            g += 1
        print(g)
    t1 = threading.Thread(target=test1)
    t2 = threading.Thread(target=test2)
    t1.start()
    t2.start()
     
    10
    20
     
    import  time
    import threading
    g=0
    def test1():
        global g
        for i in range(1000000):
            g+=1
    def test2():
        global g
        for k in range(1000000):
            g+=1
    t1=threading.Thread(target=test1)
    t2=threading.Thread(target=test2)
    t1.start()
    t2.start()
    t1.join()            #等待进程结束,结果依然小于2000000,原因是进程运行会出错。
    t2.join()
    print(g)
     
    #计算并发所用的时间
    import threading
    import time
    def test1(n):
        time.sleep(1)
        print('task', n)
    def test2(n):
        time.sleep(1)
        print('task', n)
    start = time.time()
    t1 = threading.Thread(target=test1, args=(1,))
    t2 = threading.Thread(target=test1, args=(2,))
    t1.start()
    t2.start()
    l.append(t1)
    l.append(t2)
    for i in l:
        i.join()
    end = time.time()
    print(end - start)
    GIL的全称是:Global Interpreter Lock,意思就是全局解释器锁,这个GIL并不是python的特性,他是只在Cpython解释器里引入的一个概念,而在其他的语言编写的解释器里就没有这个GIL例如:Jython,Pypy
    为什么会有gil?:
           随着电脑多核cpu的出现核cpu频率的提升,为了充分利用多核处理器,进行多线程的编程方式更为普及,随之而来的困难是线程之间数据的一致性和状态同步,而python也利用了多核,所以也逃不开这个困难,为了解决这个数据不能同步的问题,设计了gil全局解释器锁。
    说到gil解释器锁,我们容易想到在多线程中共享全局变量的时候会有线程对全局变量进行的资源竞争,会对全局变量的修改产生不是我们想要的结果,而那个时候我们用到的是python中线程模块里面的互斥锁,哪样的话每次对全局变量进行操作的时候,只有一个线程能够拿到这个全局变量;看下面的代码:
    import threading
    global_num = 0


    def test1():
        global global_num
        for i in range(1000000):
            global_num += 1

        print("test1", global_num)


    def test2():
        global global_num
        for i in range(1000000):
            global_num += 1

        print("test2", global_num)

    t1 = threading.Thread(target=test1)
    t2 = threading.Thread(target=test2)
    t1.start()
    t2.start()
    在上面的例子里,我们创建了两个线程来争夺对global_num的加一操作,但是结果并非我们想要的,所以我们在这里加入了互斥锁

    import threading
    import time
    global_num = 0

    lock = threading.Lock()

    def test1():
        global global_num
        lock.acquire()
        for i in range(1000000):
            global_num += 1
        lock.release()
        print("test1", global_num)


    def test2():
        global global_num
        lock.acquire()
        for i in range(1000000):
            global_num += 1
        lock.release()
        print("test2", global_num)

    t1 = threading.Thread(target=test1)
    t2 = threading.Thread(target=test2)
    start_time = time.time()

    t1.start()
    t2.start()
     
     
     多进程
    #一个程序运行起来之后,代码+用到的资源称之为进程,它是操作系统分配资源的基本单位,不仅可以通过线程完成多任务,进程也是可以的
    #进程之间是相互独立的
    #cpu密集的时候适合用多进程
     
    #进程之间不共享
    import multiprocessing
    from multiprocessing import Pool
    import time
    import threading
    g_num = 0
    def edit():
        global g_num
        for i in range(10):
            g_num += 1

    def reader():
        print(g_num)


    if __name__ == '__main__':
        p1 = multiprocessing.Process(target=edit)
        p2 = multiprocessing.Process(target=reader())
        p1.start()
        p2.start()
        p1.join()
        p2.join()
    #多进程并发
    import multiprocessing
    from multiprocessing import Pool
    import time
    def test1():
        for i in range(10):
            time.sleep(1)
            print('test', i)

    def test2():
        for i in range(10):
            time.sleep(1)
            print('test', i)

    if __name__ == '__main__':
        p1 = multiprocessing.Process(target=test1)
        p2 = multiprocessing.Process(target=test2)
        p1.start()
        p2.start()
    #进程池
    import multiprocessing
    from multiprocessing import Pool
    import time
    import threading
    g_num = 0
    def test1(n):
        for i in range(n):
            time.sleep(1)
            print('test1', i)

    def test2(n):
        for i in range(n):
            time.sleep(1)
            print('test2', i)
    def test3(n):
        for i in range(n):
            time.sleep(1)
            print('test3', i)

    def test4(n):
        for i in range(n):
            time.sleep(1)
            print('test4', i)

    if __name__ == '__main__':
        pool = Pool(3)#把进程声明出来括号里不写东西说明无限制,如果写数字,就是最大的进程数
        pool.apply_async(test1,(10,))#用pool去调用函数test1,参数为10格式为(10,)
        pool.apply_async(test2,(10,))#用pool去调用函数test2,参数为10格式为(10,)
        pool.apply_async(test3,(10,))#用pool去调用函数test3,参数为10格式为(10,)
        pool.apply_async(test4,(10,))#用pool去调用函数test4,参数为10格式为(10,)
        pool.close()#close必须在join的前面
        pool.join()
     

    人生一世,草木一秋。 众生无我,苦乐随缘。
  • 相关阅读:
    ajax请求超时
    tp5去重统计某字段的数量
    html本地存储 localStorge
    json、obj转换
    关于数组的合并arr.push() arr.push.apply()
    curl内容
    js 回车键登录
    tp5 前置操作
    STL容器
    c++文件的读写
  • 原文地址:https://www.cnblogs.com/hao6/p/12863517.html
Copyright © 2011-2022 走看看