zoukankan      html  css  js  c++  java
  • One Person Game(概率+数学)

    There is a very simple and interesting one-person game. You have 3 dice, namelyDie1Die2 and Die3Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1K2K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

    1. Set the counter to 0 at first.
    2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
    3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

    Calculate the expectation of the number of times that you cast dice before the end of the game.

     

    Input

     

    There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers nK1K2K3abc (0 <= n <= 500, 1 < K1K2K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

     

    Output

     

    For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

     

    Sample Input

    2
    0 2 2 2 1 1 1
    0 6 6 6 1 1 1

    Sample Output

    1.142857142857143
    1.004651162790698



    题意: T 组数据, 每组数据一行,n, K1, K2, K3, a, b, c 代表 3 个骰子有 K1,K2,K3 个面
    用这三个骰子玩游戏,首先,计数器清零,掷一次,如果三个骰子中,第一个为 a, 第二个为b,第三个为c ,计数器清零,否则,计数器累加三个骰子之和。
    如此重复执行第二步 ,直到计数器和大于 n 问计数器大于 n 的游戏次数期望

    要推导出个递推式子,然后发现都和 dp[0] 相关,分离系数,我也是看了这篇博客才懂的,写得很好:
    http://www.cnblogs.com/kuangbin/archive/2012/10/03/2710648.html

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 
     6 #define MAXN 600
     7 
     8 int n, k1, k2, k3, a, b, c;
     9 double A[MAXN],B[MAXN];
    10 double p0;
    11 double p[100];
    12 
    13 int main()
    14 {
    15     int T;
    16     cin>>T;
    17     while (T--)
    18     {
    19         scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
    20         memset(A,0,sizeof(A));
    21         memset(B,0,sizeof(B));
    22         memset(p,0,sizeof(p));
    23 
    24         p0=1.0/(k1*k2*k3);   //单位概率,变为 0 的概率
    25         for (int j1=1;j1<=k1;j1++)
    26         for (int j2=1;j2<=k2;j2++)
    27         for (int j3=1;j3<=k3;j3++)
    28             if(j1!=a||j2!=b||j3!=c)
    29             p[j1+j2+j3]+=p0;  //掷出某一个和的概率
    30 
    31         for (int i=n;i>=0;i--)//因为要循环到大于 n
    32         {
    33             for (int j=1;j<=k1+k2+k3;j++)
    34             {
    35                 A[i]+=p[j]*A[i+j];
    36                 B[i]+=p[j]*B[i+j];
    37             }
    38             A[i]+=p0;
    39             B[i]+=1.0;
    40         }
    41         double ans = B[0]/(1.0-A[0]);
    42         printf("%.15lf
    ",ans);
    43     }
    44     return 0;
    45 }
    View Code



  • 相关阅读:
    基于spring mvc的图片验证码实现
    spring mvc controller间跳转 重定向 传参
    fedora23安装配置记录
    Qt移动开发大部分的场景基本上实现没问题,listview支持刷新3000~5000的实时数据没有任何压力(QML的几个大型应用)
    经过了这么多年的发展,软件开发行业已经完全渗入了整个社会
    Qt云服务/云计算平台QTC(Qt Cloud Services)入门(0)
    Windows下用VC与QT编译MPI程序入门
    VS2008下QT整合OGRE
    表现层及ASP.NET MVC介绍(二)
    DDD分层架构的进化
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6700963.html
Copyright © 2011-2022 走看看