zoukankan      html  css  js  c++  java
  • Building Shops

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

    Total Submission(s): 379    Accepted Submission(s): 144


    Problem Description

    HDU’s n classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these n classrooms.

    The total cost consists of two parts. Building a candy shop at classroom i would have some cost ci. For every classroom P without any candy shop, then the distance between P and the rightmost classroom with a candy shop on P's left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side.

    Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.

     

    Input

    The input contains several test cases, no more than 10 test cases.
    In each test case, the first line contains an integer n(1n3000), denoting the number of the classrooms.
    In the following n lines, each line contains two integers xi,ci(109xi,ci109), denoting the coordinate of the i-th classroom and the cost of building a candy shop in it.
    There are no two classrooms having same coordinate.

     

    Output

    For each test case, print a single line containing an integer, denoting the minimal cost.

     

    Sample Input

    3
    1 2
    2 3
    3 4
    4
    1 7
    3 1
    5 10
    6 1

    Sample Output

    5

    11

    // 一条直线上有 n 的教室,想要在这些点上建一些糖果店,建设糖果店的成本分为 2 部分,建设费,右边的非糖果店到这个糖果店的距离差的和(累加到是一个糖果店为止)

    //典型DP题

    dp[i] 为在 i 建造最后一个糖果店的最小花费的话

    丛左到右 dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+1)*(shop[i].p-shop[j].p)) (1<=j<i) p是位置,v为建造费

    还有就是需要排序,还有需要 long long 型

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <algorithm>
     4 using namespace std;
     5 #define LL long long
     6 #define MX 3005
     7 struct Shop
     8 {
     9     LL p,v;
    10     bool operator < (const Shop& b)const
    11     {
    12         return p<b.p;
    13     }
    14 }shop[MX];
    15 LL dp[MX];
    16 
    17 int main()
    18 {
    19     int n;
    20     while (scanf("%d",&n)!=EOF)
    21     {
    22         for (int i=1;i<=n;i++)
    23             scanf("%I64d%I64d",&shop[i].p,&shop[i].v);
    24         sort(shop+1,shop+1+n);
    25         LL total = 0;
    26         for (int i=1;i<=n;i++)
    27             total += shop[i].p - shop[1].p;
    28 
    29         dp[1]=shop[1].v+total;
    30         for (int i=2;i<=n;i++)
    31         {
    32             for (int j=1;j<i;j++)
    33             {
    34                 if (j==1) dp[i] = dp[j] + shop[i].v - (n-i+1)*(shop[i].p-shop[j].p);
    35                 else dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+1)*(shop[i].p-shop[j].p));
    36             }
    37         }
    38         LL ans = dp[1];
    39         for (int i=2;i<=n;i++)
    40             ans = min(dp[i],ans);
    41         printf("%I64d
    ",ans);
    42     }
    43     return 0;
    44 }
    View Code
  • 相关阅读:
    模板嵌套类别名作为函数返回类型,可能会提示的编译错误
    不能将“this”指针从“const SqQueue<ElementType>”转换为“SqQueue<ElementType> &
    与左侧的 圆括号“(”(位于“e:大二上课程课件、作业和答案数据结构chapter4sqstacksqstackmysqstack.h(23)”)匹配之前遇到文件结束
    operator <<”不明确
    此声明没有类型说明符
    设计模式一责任链模式
    设计模式一静态代理模式
    设计模式一原型模式
    设计模式一观察者模式
    设计模式一备忘录模式
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6830968.html
Copyright © 2011-2022 走看看