//求一个直径为 k 的树有多少种形态,每个点的度不超过 3
// 非常完美的分析,学到了,就是要细细推,并且写的时候要细心
还有除法取模需要用逆元
#include <iostream> #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> using namespace std; #define MOD 1000000007 #define LL long long #define MX 100005 LL dp[MX]; LL sum[MX]; LL inv2; LL inv6; LL quick(LL a,LL b) { LL ret = 1; while (b) { if (b&1) ret = ret*a%MOD; a = a*a%MOD; b/=2; } return ret; } void Init() { inv2 = quick(2,MOD-2); inv6 = quick(6,MOD-2); dp[0]=1,sum[0]=1; dp[1]=1,sum[1]=2; for (int i=2;i<MX;i++) { dp[i] = dp[i-1]*(dp[i-1]-1)%MOD*inv2%MOD; dp[i] = (dp[i] + dp[i-1])%MOD; dp[i] = (dp[i] + dp[i-1]*sum[i-2]%MOD)%MOD; sum[i]=(sum[i-1]+dp[i])%MOD; } } int main() { int n; Init(); while (scanf("%d",&n)&&n) { if (n%2==0) { int i = n/2; int ans = (dp[i]+dp[i]*(dp[i]-1)/2)%MOD; printf("%d ",ans); } else { int i = n/2; int ans = (((dp[i]*(dp[i]+1))%MOD*inv2%MOD)*sum[i-1])%MOD; ans = (ans + dp[i])%MOD; ans = (ans + (dp[i]*(dp[i]-1)%MOD)%MOD)%MOD; ans = (ans + dp[i]*(dp[i]-1)%MOD*(dp[i]-2)%MOD*inv6%MOD )%MOD; printf("%d ",ans); } } return 0; }