zoukankan      html  css  js  c++  java
  • Flow Problem(最大流模板)

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 17963    Accepted Submission(s): 8464


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2
    3 2
    1 2 1
    2 3 1
    3 3
    1 2 1
    2 3 1
    1 3 1
     
    Sample Output
    Case 1: 1
    Case 2: 2
     
    Author
    HyperHexagon
     
    Source
     
     
    题意:n 个点 m 条有向边,给出 m 条边的 u,v ,cap 问求最大流,算是模板题
    练习了Dinic算法
      1 # include <bits/stdc++.h>
      2 using namespace std;
      3 # define eps 1e-8
      4 # define INF 0x3f3f3f3f
      5 # define pi  acos(-1.0)
      6 # define MXN  105
      7 # define MXM  1005
      8 
      9 struct Edge{
     10     int from, to, flow, cap;
     11 }edges[MXM*2];              //有向边数
     12 
     13 struct Dinic{
     14     int n, m, s ,t ,idx;    //点,边,源点,汇点,边数
     15     vector<int> G[MXN];     //记录边
     16     int vis[MXN];           //BFS用
     17     int dis[MXN];           //层次
     18     int cur[MXN];           //考虑到哪条弧
     19 
     20     void Init(){
     21         idx=0;
     22         for (int i=1;i<=n;i++) G[i].clear();    //有附加点时要注意
     23     }
     24     
     25     void Addedge(int u,int v,int c){
     26         edges[idx++] = (Edge){u,v,0,c};
     27         edges[idx++] = (Edge){v,u,0,0};
     28         G[u].push_back(idx-2);
     29         G[v].push_back(idx-1);
     30     }
     31 
     32     int BFS()
     33     {
     34         memset(vis,0,sizeof(vis));
     35         queue<int> Q;
     36         Q.push(s);
     37         dis[s] = 0, vis[s] = 1;
     38         while(!Q.empty())
     39         {
     40             int u = Q.front(); Q.pop();
     41             for (int i=0;i<(int)G[u].size();i++)
     42             {
     43                 Edge &e = edges[G[u][i]];
     44                 if (!vis[e.to]&&e.cap>e.flow)
     45                 {
     46                     dis[e.to]=dis[u]+1;
     47                     vis[e.to]=1;
     48                     Q.push(e.to);
     49                 }
     50             }
     51         }
     52         return vis[t];
     53     }
     54 
     55     int DFS(int x,int a)
     56     {
     57         if (x==t||a==0) return a;
     58         int flow = 0, temp;
     59         for (int &i=cur[x];i<(int)G[x].size();i++)
     60         {
     61             Edge &e = edges[G[x][i]];
     62             if (dis[e.to] == dis[x]+1 && (temp=DFS(e.to, min(a, e.cap-e.flow)))>0)
     63             {
     64                 e.flow+=temp;
     65                 edges[G[x][i]^1].flow-=temp;
     66                 flow += temp;
     67                 a-=temp;
     68                 if (a==0) break;
     69             }
     70         }
     71         return flow;
     72     }
     73 
     74     int MaxFlow(int s,int t)
     75     {
     76         this->s = s, this->t = t;
     77         int flow=0;
     78         while(BFS()){
     79             memset(cur,0,sizeof(cur));
     80             flow+=DFS(s,INF);
     81         }
     82         return flow;
     83     }
     84 }F;
     85 
     86 int main()
     87 {
     88     int T;
     89     scanf("%d",&T);
     90     for (int cas=1;cas<=T;cas++)
     91     {
     92         scanf("%d%d",&F.n,&F.m);
     93         F.Init();
     94         for (int i=1;i<=F.m;i++)
     95         {
     96             int u,v,c;
     97             scanf("%d%d%d",&u,&v,&c);
     98             F.Addedge(u,v,c);
     99         }
    100         printf("Case %d: %d
    ",cas,F.MaxFlow(1,F.n));
    101     }
    102     return 0;
    103 }
    View Code

     

  • 相关阅读:
    .NET中使用嵌入的资源
    C#操作注册表
    .Net中大数加减乘除运算
    CYQ.Data 轻量数据层之路 V4.5 版本发布[更好的使用体验,更优的缓存机制]
    关于性能比较的应用误区
    秋色园QBlog技术原理解析:性能优化篇:打印页面SQL,全局的SQL语句优化(十三)
    CYQ.DBImport 数据库反向工程及批量导数据库工具 V1.0 发布
    框架设计之菜鸟漫漫江湖路系列 一:菜鸟入门
    MySql折腾小记二:text/blog类型不允许设置默认值,不允许存在两个CURRENT_TIMESTAMP
    CYQ.Data.Xml XmlHelper 助你更方便快捷的操作Xml/Html
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/7800579.html
Copyright © 2011-2022 走看看