zoukankan      html  css  js  c++  java
  • 架构杂谈《四》

    架构杂谈《四》

    分布式一致性协议

    一、引言

      在分布式系统中,为了保证数据的高可用,通常会将数据保留多个副本(replica),这些个副本会放在不同的物理机上,为了对用户提供正确的数据,我们需要保证这些放在不同物理机上的副本是一致的。为了解决这种分布式一致性问题,提出了很多经典的协议和算法,比较著名的是 两阶段提交协议和三阶段提交协议。

    二、两阶段提交协议

      两阶段提交协议把分布式事务分为两个阶段,一个是准备阶段,一个是提交阶段。准备阶段和提交阶段都是由事务管理器发起的,两阶段提交协议的流程如下:

      1、准备阶段:事务管理器向资源管理器发起指令,资源管理器评估自己的状态,如果资源管理器评估指令可以完成。则会写redo或者undo日志,然后锁定资源,执行操作,但是并不会提交

      2、提交阶段:如果每个资源管理器明确返回准备成功,事务管理器向资源管理器发起提交指令,资源管理器提交资源变更的事务,释放锁定的资源;如果任何一个资源管理明确返回准备失败,则事务管理器向资源管理器发起中止指令,资源管理器取消已经变更的事务,执行undo日志。释放锁定的资源。

      

    两阶段提交协议的成功场景图

      我们从上图中可以看到,两阶段提交协议在准备阶段锁定资源,这是一个重量级的操作,能保证强一致性,但是实现起来复杂、成本大、不够灵活。还有以下缺点:

         (1)、阻塞:对于任何一次指令都必须收到明确的响应,才会继续进行下一步,否则处于阻塞状态,占用的资源一直被锁定,不会释放

         (2)、单点故障:如果事务管理器(协调者)挂了(宕机),资源管理器(参与者)没有事务管理器(协调者)指挥,则会一直阻塞,尽管可以通过选举新的协调者替代原有的协调者,但是参与者接收后也宕机,则新上任的协调者无法处理这种情况

         (3)、脑裂:协调者发送提交指令,有的参与者接收到并执行了事务,有的参与者没有接收到事务就没有执行事务,多个参与者之间是不一致的。

      上面的问题虽然很少发生,但每次发生都需要人工参与,没有自动化解决方案,因此两阶段提交协议在正常情况下能保证系统的强一致性,但在出现异常的情况下,需要人工干预解决,因此可用性不够好,其实这也符合CAP协议的一致性和可用性不能兼得的原理。

    三、三阶段提交协议

      三阶段提交协议是两阶段提交协议的改进版本,它通过超时机制解决了阻塞的问题,并且把两个阶段增加为三个阶段。

      1、询问阶段:事务管理器(协调者)询问参与者(资源管理器)是否可以完成指令,参与者只需要回答是或者否,而不需要做真正的操作,这个阶段超时会导致中止。

      2、准备阶段:如果在询问阶段所有参与者都返回可以执行操作,则协调者向参与者发送预执行请求,然后参与者写 redo 和 undo 日志,执行操作但不提交操作;如果在询问阶段任何一个参与者返回不能执行操作的结果,则协调者向参与者发送中止请求,这里的逻辑和两阶段提交协议的准备阶段是相似的。

      3、提交阶段:如果每个参与者在准备阶段返回准备成功,则协调者向参与者发送提交指令,参与者提交资源变更的事务,释放锁定的资源;如果任何一个参与者返回准备失败,则协调者向参与者发送中止指令,参与者自己取消已经变更的事务,执行 undo 日志,释放锁定的资源。这里的逻辑和两阶段提交协议的提交阶段一致。

        

     (三阶段提交协议的成功场景图)

      三阶段提交协议与两阶段提交协议主要有以下不同点:

        (1)、增加了一个询问阶段,询问阶段可以确保尽可能早地发现无法执行操作而需要中止的行为,但是它并不能发现所有的这种行为,只会减少这种情况的发生。

        (2)、在准备阶段以后,协调者和参与者执行的任务中都增加了超时,一旦超时,则协调者和参与者都会继续提交事务,默认为成功。

      三阶段提交协议与两阶段提交协议相比,具有以上的优点,但是一旦发生超时,系统仍然会发生不一致,只不过这种情况很少见。好处是不会阻塞和永远锁定资源。  

    四、TCC

      两阶段和三阶段提交协议,在遇到极端情况时,系统会产生阻塞或者不一致的问题,需要人干预解决。两阶段及三阶段方案中都包含多个参与者、多个阶段实现一个事务。实现事务,性能也是一个很大的问题。因此在互联网的高并发系统中,很少有使用两阶段提交和三阶段提交协议的场景。

      后来有人提出了TCC协议,TCC协议将一个任务分成 Try、Confirm、Cancel 三个步骤。正常的流程会先执行 Try,如果执行没有问题,则再执行 Confirm,如果执行过程中出现了异常。则执行操作的逆操作 Cancel。从正常的流程上讲。这还是一个两阶段提交协议,但在执行出现异常后有一定的自我修复能力,如果任何参与者出现了问题,则协调者通过执行操作的逆操作来 Cancel 之前的操作。达到最终一致性状态。

      可以看出,从时序上讲,如果遇到机端情况,则TCC会有很多问题,如:如果在取消时一些参与者收到指令,而另一些参与者没有收到指令,则整个系统任然是不一致的,对于这种复杂的情况,系统首先会通过补偿的方式尝试自我修复,如果系统无法修复。还是需要人工干预解决。

      从 TCC 的逻辑上来看,它是简化版的三阶段提交协议,解决了两阶段提交协议的阻塞问题,但还是没有解决极端情况下出现的问题(不一致和脑裂问题)。然而,TCC 通过自动化补偿手段,将需要人工处理的不一致问题降到最低,也是一种很有用的解决方案。

                                      

    (TCC 协议的使用场景)

    说明:

      1、参考书籍:《分布式服务架构:原理、设计与实战》

      2、如有不合适的地方请反馈。综合后更改。

  • 相关阅读:
    非系统表空间损坏,rman备份恢复
    非系统数据文件损坏,rman备份恢复
    开启 控制文件自动备份下,参数文件、控制文件全部丢失恢复
    rman命令详解(三)
    Block Change Tracking (块改变跟踪)
    如何加快建 index 索引 的时间
    RMAN兼容性、控制文件自动备份、保存时间、备份策略、备份脚本(二)
    rman理论(一)
    动态参数与静态参数的判断、修改
    闪回之 Flashback Data Archive
  • 原文地址:https://www.cnblogs.com/haoxiaozhang/p/11197729.html
Copyright © 2011-2022 走看看