zoukankan      html  css  js  c++  java
  • Mongodb aggregation 基本操作示例

    MongoDB二个主要的操作:一个是查询,另一个是统计。对于查询而言,主要是find()方法,再配合Filters组合多个查询条件

    对于统计而言,则主要是aggregate操作,比如 group、sum、avg、project、match……

    aggregate可以将上述操作组织成 pipeline 形式,依次经过各种操作处理。

    本文是MongoDB University M101的课程笔记,主要记录:MongoDB aggregate的一些常用操作。

    参考资料:sql to aggregation mapping chart

    ①project

    它是个1:1的操作,即一个Document输入给project处理,输出一个新的Document。它主要对Key进行处理(大小写转换、删除原来Document某些Key……)

    比如原Document如下:

    {
        "city" : "ACMAR",
        "loc" : [
            -86.51557,
            33.584132
        ],
        "pop" : 6055,
        "state" : "AL",
        "_id" : "35004"
    }

    想把它变成:

    {
        "city" : "acmar",
        "pop" : 6055,
        "state" : "AL",
        "zip" : "35004"
    }

    使用:project操作符进行处理:

    db.zips.aggregate([
    {$project:{_id:0, city:{$toLower:"$city"}, pop:1, state:1, zip:"$_id"}}
    ])
    _id:0  去掉原Document中的_id字段;city:{$ toLower:"$city"}   对原Document中的 "$city" 的值全部转换成小写,赋给新city字段

    pop:1  state:1  表示将原Document中的 pop 字段、state 字段 放到新Document中

    zip:"$_id" 将原Document中的 '_id'字段值  赋值给 新的 "zip" 字段  

    ②group avg,根据分组求平均值。比如某个Document格式如下:对 state字段进行分组,求每个state的人口(pop)的平均值

    {
        "city" : "FISHERS ISLAND",
        "loc" : [
                -72.017834,
                41.263934
        ],
        "pop" : 329,
        "state" : "NY",
        "_id" : "06390"
    }
    db.zips.aggregate([
    {"$group":{"_id":"$state", "average_pop":{"$avg":"$pop"}}}
    ])

    $group表示分组操作,执行该操作后会生成一个新Document。

    _id:$state 表示对 $state 字段进行分组,生成的新Document的 _id 为 state的值
    "$avg":"$pop" 表示对原Document中的 “pop”字段按 $state 分组求平均值。得到的平均值为 "average_pop"字段的值。

    最终的结果如下:

    { "_id" : "NY", "average_pop" : 9705.34 }
    { "_id" : "CT", "average_pop" : 13226.48 }
    { "_id" : "CA", "average_pop" : 19067.72 }
    { "_id" : "NJ", "average_pop" : 16949.9 }

    ③match

    Document示例如下:想要过滤人口字段(pop)大于100 000 的所有记录。

    {
        "city" : "ACMAR",
        "loc" : [
            -86.51557,
            33.584132
        ],
        "pop" : 6055,
        "state" : "AL",
        "_id" : "35004"
    }
    db.zips.aggregate([
    {$match:{
        pop:{$gt:100000}
        }
    }
    ])

    $match表示对 Document进行过滤

    pop:{$gt:100000} 表示根据 pop 字段过滤,过滤的条件为 pop 的值大于100000

    ④sort

    Document示例如下,现在需要对 state 和 city 这两个字段进行升序排序。

    {
        "city" : "ACMAR",
        "loc" : [
            -86.51557,
            33.584132
        ],
        "pop" : 6055,
        "state" : "AL",
        "_id" : "35004"
    }
    db.zips.aggregate( [ { $sort:{state:1, city:1} } ] )

    返回结果如下:

    { "_id" : "95915", "city" : "BELDEN", "loc" : [ -121.325924, 39.921746 ], "pop" : 32, "state" : "CA" }
    { "_id" : "90706", "city" : "BELLFLOWER", "loc" : [ -118.126527, 33.886676 ], "pop" : 61650, "state" : "CA" }
    { "_id" : "93430", "city" : "CAYUCOS", "loc" : [ -120.890791, 35.444606 ], "pop" : 3384, "state" : "CA" }
    { "_id" : "96107", "city" : "COLEVILLE", "loc" : [ -119.482784, 38.502903 ], "pop" : 1370, "state" : "CA" }

    ⑤group、sort、first

    Document示例如下,现在要寻找,每个州(state)下的 每个城市(city)人口的最大值。

    { "_id" : "07840", "city" : "HACKETTSTOWN", "loc" : [ -74.834315, 40.852891 ], "pop" : 23440, "state" : "NJ" }
    { "_id" : "93254", "city" : "NEW CUYAMA", "loc" : [ -119.823806, 34.996709 ], "pop" : 80, "state" : "CA" }
    { "_id" : "92278", "city" : "TWENTYNINE PALMS", "loc" : [ -116.06041, 34.237969 ], "pop" : 11412, "state" : "CA" }
    { "_id" : "08536", "city" : "PLAINSBORO", "loc" : [ -74.568836, 40.332432 ], "pop" : 13008, "state" : "NJ" }
    { "_id" : "06117", "city" : "W HARTFORD", "loc" : [ -72.745689, 41.790021 ], "pop" : 14774, "state" : "CT" }
    { "_id" : "06071", "city" : "SOMERS", "loc" : [ -72.458266, 41.997813 ], "pop" : 9685, "state" : "CT" }
    { "_id" : "92070", "city" : "SANTA YSABEL", "loc" : [ -116.69635, 33.147579 ], "pop" : 1263, "state" : "CA" }
    { "_id" : "91941", "city" : "LA MESA", "loc" : [ -117.011541, 32.760431 ], "pop" : 42536, "state" : "CA" }
    { "_id" : "06705", "city" : "WATERBURY", "loc" : [ -72.996268, 41.550328 ], "pop" : 25128, "state" : "CT" }
    { "_id" : "07750", "city" : "MONMOUTH BEACH", "loc" : [ -73.98089, 40.333032 ], "pop" : 3329, "state" : "NJ" }
    { "_id" : "06095", "city" : "WINDSOR", "loc" : [ -72.663893, 41.856122 ], "pop" : 27815, "state" : "CT" }
    { "_id" : "06702", "city" : "WATERBURY", "loc" : [ -73.038545, 41.556568 ], "pop" : 4522, "state" : "CT" }
    { "_id" : "13833", "city" : "SANITARIA SPRING", "loc" : [ -75.790978, 42.195735 ], "pop" : 4777, "state" : "NY" }
    { "_id" : "95363", "city" : "PATTERSON", "loc" : [ -121.140732, 37.490592 ], "pop" : 13437, "state" : "CA" }

    第一步:统计每个州下每个城市的人口总和:

    db.zips.aggregate( [ 
    { $group:
    {_id:{state:"$state",city:"$city"},
    population:{$sum:"$pop"}}
    }
    ] )

    得到如下Document:(注意Document的 _id 变化)

    { "_id" : { "state" : "NJ", "city" : "ISLAND HEIGHTS" }, "population" : 1470 }
    { "_id" : { "state" : "NY", "city" : "REDWOOD" }, "population" : 1735 }
    { "_id" : { "state" : "CT", "city" : "TAFTVILLE" }, "population" : 2538 }
    { "_id" : { "state" : "CT", "city" : "ELLINGTON" }, "population" : 9070 }
    { "_id" : { "state" : "CT", "city" : "STORRS MANSFIELD" }, "population" : 16117 }
    { "_id" : { "state" : "NJ", "city" : "MERCHANTVILLE" }, "population" : 22294 }
    { "_id" : { "state" : "NJ", "city" : "STRATHMERE" }, "population" : 163 }
    { "_id" : { "state" : "CA", "city" : "LA JOLLA" }, "population" : 40399 }
    { "_id" : { "state" : "NY", "city" : "HURLEYVILLE" }, "population" : 3303 }
    { "_id" : { "state" : "NJ", "city" : "NORTH BRANCH" }, "population" : 34212 }
    { "_id" : { "state" : "NJ", "city" : "WEEHAWKEN" }, "population" : 69646 }
    { "_id" : { "state" : "NJ", "city" : "MANALAPAN" }, "population" : 28928 }
    { "_id" : { "state" : "NY", "city" : "NEW YORK" }, "population" : 8190 }
    { "_id" : { "state" : "NY", "city" : "DEWITTVILLE" }, "population" : 1159 }
    { "_id" : { "state" : "NY", "city" : "QUEENSBURY" }, "population" : 15023 }
    ....
    ....

    按state 对人口进行排序

    db.zips.aggregate( [ 
    { $group:{_id:{state:"$state",city:"$city"}, population:{$sum:"$pop"}} },
    {$sort:{"_id.state":1, "population":-1}}
    ] )

    得到如下Document:

    { "_id" : { "state" : "CA", "city" : "LOS ANGELES" }, "population" : 104702 }
    { "_id" : { "state" : "CA", "city" : "LA MESA" }, "population" : 66480 }
    { "_id" : { "state" : "CA", "city" : "SHORE ACRES" }, "population" : 64053 }
    { "_id" : { "state" : "CA", "city" : "BELLFLOWER" }, "population" : 61650 }
    { "_id" : { "state" : "CA", "city" : "VISALIA" }, "population" : 51620 }
    { "_id" : { "state" : "CA", "city" : "SAN DIEGO" }, "population" : 45487 }
    { "_id" : { "state" : "CA", "city" : "GOLD RIVER" }, "population" : 42461 }
    ....
    ....

    然后,再对 state 进行 group by,使用 $first 取第一条记录:就是这个州下 的人口最大的城市(city).

    first 一般和 group使用:$group得到一组Document后,使用 $first 获取该组Documents中的第一个Document。

     db.zips.aggregate([ 
    {
    $group:{_id:{state:"$state",city:"$city"},
    population:{$sum:"$pop"}
    }
    },
    {$sort:{"$_id.state":1, "population":-1}},
    {$group:{_id:"_id.state",
    city:{$first:"$_id.city"},
    population:{$first:"$population"}
    }
    }
    ])

    得到:

    { "_id" : "NJ", "city" : "JERSEY CITY", "population" : 100756 }
    { "_id" : "NY", "city" : "FLUSHING", "population" : 51947 }
    { "_id" : "CT", "city" : "BRISTOL", "population" : 60670 }
    { "_id" : "CA", "city" : "LOS ANGELES", "population" : 104702 }

    最后再对 _id 排序

     db.zips.aggregate( [ 
    { $group:{_id:{state:"$state",city:"$city"},
    population:{$sum:"$pop"}} },
    {$sort:{"_id.state":1, "population":-1}},
    {$group:{_id:"$_id.state",city:{$first:"$_id.city"},population:{$first:"$population"}}},
    {$sort:{"_id":1}}
    ] )

    得到:

    { "_id" : "CA", "city" : "LOS ANGELES", "population" : 104702 }
    { "_id" : "CT", "city" : "BRISTOL", "population" : 60670 }
    { "_id" : "NJ", "city" : "JERSEY CITY", "population" : 100756 }
    { "_id" : "NY", "city" : "FLUSHING", "population" : 51947 }
  • 相关阅读:
    fzu 2204 7 dp
    fzu Problem 2198 快来快来数一数 (快速幂+优化)
    Hdu 5464 Clarke and problem (dp)
    Hdu 5458 Stability (LCA + 并查集 + 树状数组 + 缩点)
    Codeforces Round #321 (Div. 2) A, B, C, D, E
    Hdu 5451 Best Solver (2015 ACM/ICPC Asia Regional Shenyang Online) 暴力找循环节 + 递推
    Hdu 5459 Jesus Is Here (2015 ACM/ICPC Asia Regional Shenyang Online) 递推
    Hdu 5452 Minimum Cut (2015 ACM/ICPC Asia Regional Shenyang Online) dfs + LCA
    Hdu 5442 Favorite Donut (2015 ACM/ICPC Asia Regional Changchun Online 最大最小表示法 + KMP)
    I Count Two Three---hdu5878(打表+二分)
  • 原文地址:https://www.cnblogs.com/hapjin/p/7859434.html
Copyright © 2011-2022 走看看