zoukankan      html  css  js  c++  java
  • 一道有趣的不等式题

    已知 (x 、 y 、 z) 是正数,且 (x y z=1,)(P)的最小值:
    (P=2(x+y+z)+frac{x}{y^{3}+z^{3}+1}+frac{y}{z^{3}+x^{3}+1}+frac{z}{x^{3}+y^{3}+1})

    先把后三项拿出来

    (egin{aligned} & frac{x}{y^{3} + z^{3}+1}+frac{y}{z^{3}+x^{3}+1}+frac{z}{x^{3}+y^{3}+1}\ =& frac{x^{2}}{xleft(y^{3}+z^{3} ight)+x}+frac{y^{2}}{yleft(z^{3}+x^{3} ight)+y}+frac{z^{2}}{zleft(x^{3}+y^{3} ight)+z} \geqslant &frac{(x+y+z)^{2}}{xleft(y^{3}+z^{3} ight)+yleft(z^{3}+x^{3} ight)+zleft(x^{3}+y^{3} ight)+(x+y+z)} \= & frac{(x+y+z)^{2}}{x yleft(x^{2}+y^{2} ight)+y zleft(y^{2}+z^2 ight)+ z xleft(z^{2}+x^{2} ight)+left(x+y+z ight)x y z}\=& frac{(x+y+z)^{2}}{left(x^{2}+y^{2}+z^{2} ight)(x y+y z+z x)} \=&frac{(x+y+z)^{2}(x y+y z+z x)}{left(x^{2}+y^{2}+z^{2} ight)(x y+y z+z x)(x y+y z+z x)} end{aligned})

    其中除了用到了(x y z=1)进行代换,还用到了不等式(sumfrac{a_i^2}{a_ib_i}geqslantfrac{left(sum a_i ight)^2}{sum a_ib_ i})(将分母乘到左边,柯西不等式可证)

    然后使用均值不等式

    (egin{aligned} & frac{(x+y+z)^{2}(x y+y z+z x)}{left(x^{2}+y^{2}+z^{2} ight)(x y+y z+z x)(x y+y z+z x)} \geqslant& frac{(x+y+z)^{2} cdot 3 sqrt[3]{x y cdot y zcdot zx}}{left(frac{(x+y+z)^{2}}{3} ight)^{3}} \=&frac{81}{(x+y+z)^{4}} end{aligned})

    (egin{aligned} herefore P &=2(x+y+z)+frac{x}{y^{3}+z^{3}+1}+frac{y}{z^{3}+x^{3}+1}+frac{z}{x^{3}+y^{3}+1} \ & geqslant 2(x+y+z)+frac{81}{(x+y+z)^{4}} \ &=4 left (frac{x+y+z}{3} ight)+frac{81}{(x+y+z)^{4}}+frac{2}{3}(x+y+z) \ &geqslant 5 sqrt[5]{left(frac{x+y+z}{3} ight)^{4} cdot frac{81}{(x+y+z)^{4}}}+frac{2}{3} cdot 3 sqrt[3]{x y z}\&=5+2=7 end{aligned})

    最后这一步比较妙,注意到第一次使用均值不等式时取等条件为(x=y=z=1),后续使用不等式时必须满足此取等条件,因此这里将(2(x+y+z))拆分成(5)项而非简单的(4)

  • 相关阅读:
    线段树专辑—— pku 1436 Horizontally Visible Segments
    线段树专辑——pku 3667 Hotel
    线段树专辑——hdu 1540 Tunnel Warfare
    线段树专辑—— hdu 1828 Picture
    线段树专辑—— hdu 1542 Atlantis
    线段树专辑 —— pku 2482 Stars in Your Window
    线段树专辑 —— pku 3225 Help with Intervals
    线段树专辑—— hdu 1255 覆盖的面积
    线段树专辑—— hdu 3016 Man Down
    Ajax跨域访问
  • 原文地址:https://www.cnblogs.com/happyLittleRabbit/p/13518813.html
Copyright © 2011-2022 走看看