MB-LBP特征,注意区分是Multi-block LBP还是MultiScale Block LBP,区别是是否使用了多尺度方法。其中Multiscale Block LBP,来源于论文,中科院的人发明的,opencv源码在Traincascade级联目标训练检测中的LBP特征使用的就是MultiScale Block LBP。
generateFeatures
void CvLBPEvaluator::generateFeatures() { int offset = winSize.width + 1; for( int x = 0; x < winSize.width; x++ ) for( int y = 0; y < winSize.height; y++ ) for( int w = 1; w <= winSize.width / 3; w++ ) for( int h = 1; h <= winSize.height / 3; h++ ) if ( (x+3*w <= winSize.width) && (y+3*h <= winSize.height) ) features.push_back( Feature(offset, x, y, w, h ) ); numFeatures = (int)features.size(); }
Feature
CvLBPEvaluator::Feature::Feature( int offset, int x, int y, int _blockWidth, int _blockHeight ) { Rect tr = rect = cvRect(x, y, _blockWidth, _blockHeight); CV_SUM_OFFSETS( p[0], p[1], p[4], p[5], tr, offset ) tr.x += 2*rect.width; CV_SUM_OFFSETS( p[2], p[3], p[6], p[7], tr, offset ) tr.y +=2*rect.height; CV_SUM_OFFSETS( p[10], p[11], p[14], p[15], tr, offset ) tr.x -= 2*rect.width; CV_SUM_OFFSETS( p[8], p[9], p[12], p[13], tr, offset ) }
calc
inline uchar CvLBPEvaluator::Feature::calc(const cv::Mat &_sum, size_t y) const { const int* psum = _sum.ptr<int>((int)y); int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]]; return (uchar)((psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0) | // 0 (psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0) | // 1 (psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0) | // 2 (psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0) | // 5 (psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0) | // 8 (psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0) | // 7 (psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0) | // 6 (psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0)); // 3 }
CV_SUM_OFFSETS
#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) /* (x, y) */ (p0) = (rect).x + (step) * (rect).y; /* (x + w, y) */ (p1) = (rect).x + (rect).width + (step) * (rect).y; /* (x, y + h) */ (p2) = (rect).x + (step) * ((rect).y + (rect).height); /* (x + w, y + h) */ (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);
参考
1. LBP特征原理及代码实现;
2. opencv源码解析之LBP特征;
3. 机器学习之LBP特征;
5. Face Detection Based on Multi-Block LBP Representation;
6. Learning Multi-scale Block Local Binary Patterns for Face Recognition;
完