zoukankan      html  css  js  c++  java
  • 【Leetcode_easy】633. Sum of Square Numbers

    problem

    633. Sum of Square Numbers

    题意:

    solution1:

    可以从c的平方根,注意即使c不是平方数,也会返回一个整型数。然后我们判断如果 i*i 等于c,说明c就是个平方数,只要再凑个0,就是两个平方数之和,返回 true;如果不等于的话,那么算出差值 c - i*i,如果这个差值也是平方数的话,返回 true。遍历结束后返回 false,

    class Solution {
    public:
        bool judgeSquareSum(int c) {
            for(int i=sqrt(c); i>=0; --i)
            {
                if(i*i == c) return true;
                int d = c - i*i, t = sqrt(d);
                if(t*t == d) return true;
            }
            return false;
        }
    };

    solution2:

    使用hash set遍历保存至平方根的所有数值的平方,判断是否余值存在即可;

    疑问:保存的时候同时进行判断,那么需要判断的余值确定已经在set里了嘛?

    class Solution {
    public:
        bool judgeSquareSum(int c) {
            unordered_set<int> sq;//err.
            //for(int i=sqrt(c); i>=0; --i)//or...
            for(int i=0; i<=sqrt(c); ++i)
            {
                sq.insert(i*i);
                if(sq.count(c-i*i)) return true;
            }
            return false;
        }
    };

    solution3:左右向中间求解,类似于二分法;

    疑问:不知道为什么必须使用long类型,否则出错!

    class Solution {
    public:
        bool judgeSquareSum(int c) {
            long left = 0, right = sqrt(c);//err.
            while(left<=right)
            {
                if(left*left + right*right == c) return true;//
                else if(left*left+right*right<c) ++left;
                else --right;
            }
            return false;
        }
    };

    solution4:

    费马平方和定理 Fermat's theorem on sums of two squares 的一般推广形式:当某个数字的 4k+3 型的质数因子的个数均为偶数时,其可以拆分为两个平方数之和(each prime that is congruent to 3 mod 4 appears with an even exponent in the prime factorization of the number)。那么我们只要统计其质数因子的个数,并且判读,若其为 4k+3 型且出现次数为奇数的话直接返回 false。

    参考

    1. Leetcode_easy_633. Sum of Square Numbers;

    2. Grandyang;

  • 相关阅读:
    电赛小结
    markdown小结
    一元运算符重载
    二维数组作为函数参数传递剖析(转载)
    C语言内存(转载)
    Effective C++ chapter1:Accustiming Yourself to C++
    C++ 模板
    const
    命令行参数
    AStar算法
  • 原文地址:https://www.cnblogs.com/happyamyhope/p/11076507.html
Copyright © 2011-2022 走看看