zoukankan      html  css  js  c++  java
  • [HDU 2709] Sumsets

    Sumsets

    Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1586    Accepted Submission(s): 609

    Problem Description
    Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

    1) 1+1+1+1+1+1+1
    2) 1+1+1+1+1+2
    3) 1+1+1+2+2
    4) 1+1+1+4
    5) 1+2+2+2
    6) 1+2+4

    Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
     
    Input
    A single line with a single integer, N.
     
    Output
    The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
     
    Sample Input
    7
     
    Sample Output
    6
     
    /* 讨论版 */
    
    如果所求的n为奇数,那么所求的分解结果中必含有1,因此,直接将n-1的分拆结果中添加一个1即可 为s[n-1]
    如果所求的n为偶数,那么n的分解结果分两种情况
    1. 含有1 这种情况可以直接在n-1的分解结果中添加一个1即可 s[n-1]
    2. 不含有1,那么分解因子的都是偶数,将每个分解的因子都除以2,刚好是n/2的分解结果,并且可以与之一一对应,这种情况有 s[n/2]
    
    所以,状态转移方程:
    如果i为奇数, s[i] = s[i-1]
    如果i为偶数,s[i] = s[i-1] + s[i/2]
    
    #include <stdio.h>
    #define N 1000000
    #define MOD 1000000000
    
    int n,s[N+2];
    int main()
    {
        s[1]=1;
        s[2]=2;
        int i=3;
        while(i<=N)
        { 
            s[i++]=s[i-1];
            s[i++]=(s[i-2]+s[i>>1])%MOD;
        }
        while(scanf("%d",&n)!=EOF)
            printf("%d
    ",s[n]);
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    LaTeX公式编辑器
    早期和东京,京都大学高考试题
    猎犬追狐狸试题
    矩阵方程的计算求解(Matlab实现)
    高考压轴题
    何天成:从高联到IMO金牌,超详细数学竞赛学习方法
    几个精彩的数论问题
    高考试题网站
    泛函分析有什么好的教材?
    ifndef系列
  • 原文地址:https://www.cnblogs.com/hate13/p/4061698.html
Copyright © 2011-2022 走看看