zoukankan      html  css  js  c++  java
  • [HUST 1017] Exact cover

    Exact cover

    Time Limit: 15s Memory Limit: 128MB

    Special Judge Submissions: 6012 Solved: 3185
    DESCRIPTION
    There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
    INPUT
    There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
    OUTPUT
    First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
    SAMPLE INPUT
    6 7
    3 1 4 7
    2 1 4
    3 4 5 7
    3 3 5 6
    4 2 3 6 7
    2 2 7
    
    SAMPLE OUTPUT
    3 2 4 6
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    #define MaxNode 100010
    #define MaxN 1010
    #define MaxM 1010
    
    struct DLX
    {
        int n,m,size;
        int U[MaxNode],D[MaxNode],R[MaxNode],L[MaxNode];
        int Row[MaxNode],Col[MaxNode];
        int H[MaxN],S[MaxM];
        int ansd, ans[MaxN];
    
        void Init(int _n,int _m)
        {
            n=_n;
            m=_m;
            for(int i=0;i<=m;i++)
            {
                S[i]=0;
                U[i]=D[i]=i;
                L[i]=i-1;
                R[i]=i+1;
            }
            R[m]=0;L[0]=m;
            size=m;
            for(int i=1;i<=n;i++)
                H[i]=-1;
        }
        void Link(int r,int c)
        {
            ++S[Col[++size]=c];
            Row[size]=r;
            U[size]=U[c];
            D[U[c]]=size;
            D[size]=c;
            U[c]=size;
            if(H[r]==-1) H[r]=L[size]=R[size]=size;
            else
            {
                L[size]=L[H[r]];
                R[L[H[r]]]=size;
                R[size]=H[r];
                L[H[r]]=size;
            }
        }
        void Remove(int c)
        {
            L[R[c]]=L[c];
            R[L[c]]=R[c];
            for(int i=D[c];i!=c;i=D[i])
            {
                for(int j=R[i];j!=i;j=R[j])
                {
                    U[D[j]]=U[j];
                    D[U[j]]=D[j];
                    S[Col[j]]--;
                }
            }
        }
        void Resume(int c)
        {
            for(int i = U[c];i != c;i = U[i])
            {
                for(int j = L[i];j != i;j = L[j])
                {
                    U[D[j]]=j;
                    D[U[j]]=j;
                    S[Col[j]]++;
                }
            }
            L[R[c]] =c;
            R[L[c]] =c;
        }
        bool Dance(int d)
        {
            if(R[0]==0)
            {
                ansd=d;
                return 1;
            }
            int c=R[0];
            for(int i=R[0];i!=0;i=R[i])
                if(S[i]<S[c]) c=i;
            Remove(c);
            for(int i=D[c];i!=c;i=D[i])
            {
                ans[d]=Row[i];
                for(int j=R[i];j!=i;j=R[j]) Remove(Col[j]);  //移除
                if(Dance(d+1)) return 1;
                for(int j=L[i];j!=i;j=L[j]) Resume(Col[j]);  //回标
            }
            Resume(c);
            return 0;
        }
    }g;
    int main()
    {
        int n,m;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            g.Init(n,m);
            for(int i=1;i<=n;i++)
            {
                int num,j;
                scanf("%d",&num);
                while(num--)
                {
                    scanf("%d",&j);
                    g.Link(i,j);
                }
            }
            if(!g.Dance(0)) printf("NO
    ");
            else
            {
                printf("%d",g.ansd);
                for(int i=0;i<g.ansd;i++)
                    printf(" %d",g.ans[i]);
                printf("
    ");
            }
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    vsftp搭建
    进程管理相关命令(15 个)
    系统管理与性能监视命令 (9 个)
    系统权限及用户授权相关命令(4 个)
    用户管理命令(10个命令)
    深入网络操作命令(9条命令)
    查看系统用户登陆信息的命令(7 个)
    查看文件及内容处理命令(21个命令)
    有关磁盘与文件系统的命令(16个命令)
    linux kernel bisops.h
  • 原文地址:https://www.cnblogs.com/hate13/p/4183395.html
Copyright © 2011-2022 走看看