zoukankan      html  css  js  c++  java
  • [POJ 2429] GCD & LCM Inverse

    GCD & LCM Inverse
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 10621   Accepted: 1939

    Description

    Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b.

    Input

    The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.

    Output

    For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.

    Sample Input

    3 60

    Sample Output

    12 15

    Source

    POJ Achilles
     
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <algorithm>
    #include <cmath>
    #include <ctime>
    using namespace std;
    #define INF 0x3f3f3f3f3f3f3f3f
    #define ll long long
    #define S 8
    
    ll mult(ll a,ll b,ll mod)
    {
        a%=mod,b%=mod;
        ll ret=0;
        while(b)
        {
            if(b&1)
            {
                ret+=a;
                if(ret>=mod) ret-=mod;
            }
            a<<=1;
            if(a>=mod) a-=mod;
            b>>=1;
        }
        return ret;
    }
    ll pow(ll a,ll n,ll mod)
    {
        a=a%mod;
        ll ret=1;
        while(n)
        {
            if(n&1) ret=mult(ret,a,mod);
            a=mult(a,a,mod);
            n>>=1;
        }
        return ret;
    }
    bool check(ll a,ll n,ll x,ll t)
    {
        ll ret=pow(a,x,n),last=ret;
        for(int i=1;i<=t;i++)
        {
            ret=mult(ret,ret,n);
            if(ret==1 && last!=1 && last!=n-1) return 1;
            last=ret;
        }
        if(ret!=1) return 1;
        return 0;
    }
    bool Miller_Rabin(ll n)
    {
        if(n<2) return 0;
        if(n==2) return 1;
        if((n&1)==0) return 0;
        ll x=n-1,t=0;
        while((x&1)==0) { x>>=1;t++;}
        srand(time(NULL));
        for(int i=0;i<S;i++)
        {
            ll a=rand()%(n-1)+1;
            if(check(a,n,x,t)) return 0;
        }
        return 1;
    }
    int tot;
    ll factor[1000];
    ll gcd(ll a,ll b)
    {
        ll t;
        while(b)
        {
            t=a;
            a=b;
            b=t%b;
        }
        if(a>=0) return a;
        return -a;
    }
    ll pollard_rho(ll x,ll c)
    {
        ll i=1,k=2;
        srand(time(NULL));
        ll x0=rand()%(x-1)+1;
        ll y=x0;
        while(1)
        {
            i++;
            x0=(mult(x0,x0,x)+c)%x;
            ll d=gcd(y-x0,x);
            if(d!=1 && d!=x) return d;
            if(y==x0) return x;
            if(i==k) y=x0,k+=k;
        }
    }
    void FindFac(ll n,int k=107)
    {
        if(n==1) return;
        if(Miller_Rabin(n))
        {
            factor[tot++]=n;
            return;
        }
        ll p=n;
        int c=k;
        while(p>=n) p=pollard_rho(p,c--);
        FindFac(p,k);
        FindFac(n/p,k);
    }
    ll ansx,ansy,ans;
    void dfs(int k,ll x,ll y)
    {
        if(k>=tot)
        {
            if(x+y<ans)
            {
                ans=x+y;
                ansx=x;
                ansy=y;
            }
            return;
        }
        dfs(k+1,x*factor[k],y);
        dfs(k+1,x,y*factor[k]);
    }
    int main()
    {
        int i,j;
        ll n,m;
        while(scanf("%lld%lld",&m,&n)!=EOF)
        {
            tot=0;
            ans=INF;  //注意初始化
            FindFac(n/m,107);
            sort(factor,factor+tot);
            for(i=j=0;i<tot;i++)
            {
                ll tmp=factor[i];
                while(i+1<tot && factor[i]==factor[i+1]) //注意边界
                {
                    tmp*=factor[i];
                    i++;
                }
                factor[j++]=tmp;
            }
            tot=j;
            dfs(0,1,1);
            if(ansx>ansy) swap(ansx,ansy);
            printf("%lld %lld
    ",ansx*m,ansy*m);
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    判断平面的一堆点是否在两条直线上
    约数的个数 + 贪心
    划分树板子
    如何获取前端提交来得json格式数据
    post 和php://input 转
    使用Guzzle执行HTTP请求
    redis集群搭建 不用ruby
    systemctl命令
    canal 配置 多个监听 推送到不同mq
    canal 整合RabbitMQ
  • 原文地址:https://www.cnblogs.com/hate13/p/4444414.html
Copyright © 2011-2022 走看看