GCD & LCM Inverse
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 10621 | Accepted: 1939 |
Description
Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b.
Input
The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.
Output
For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.
Sample Input
3 60
Sample Output
12 15
Source
POJ Achilles
#include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <ctime> using namespace std; #define INF 0x3f3f3f3f3f3f3f3f #define ll long long #define S 8 ll mult(ll a,ll b,ll mod) { a%=mod,b%=mod; ll ret=0; while(b) { if(b&1) { ret+=a; if(ret>=mod) ret-=mod; } a<<=1; if(a>=mod) a-=mod; b>>=1; } return ret; } ll pow(ll a,ll n,ll mod) { a=a%mod; ll ret=1; while(n) { if(n&1) ret=mult(ret,a,mod); a=mult(a,a,mod); n>>=1; } return ret; } bool check(ll a,ll n,ll x,ll t) { ll ret=pow(a,x,n),last=ret; for(int i=1;i<=t;i++) { ret=mult(ret,ret,n); if(ret==1 && last!=1 && last!=n-1) return 1; last=ret; } if(ret!=1) return 1; return 0; } bool Miller_Rabin(ll n) { if(n<2) return 0; if(n==2) return 1; if((n&1)==0) return 0; ll x=n-1,t=0; while((x&1)==0) { x>>=1;t++;} srand(time(NULL)); for(int i=0;i<S;i++) { ll a=rand()%(n-1)+1; if(check(a,n,x,t)) return 0; } return 1; } int tot; ll factor[1000]; ll gcd(ll a,ll b) { ll t; while(b) { t=a; a=b; b=t%b; } if(a>=0) return a; return -a; } ll pollard_rho(ll x,ll c) { ll i=1,k=2; srand(time(NULL)); ll x0=rand()%(x-1)+1; ll y=x0; while(1) { i++; x0=(mult(x0,x0,x)+c)%x; ll d=gcd(y-x0,x); if(d!=1 && d!=x) return d; if(y==x0) return x; if(i==k) y=x0,k+=k; } } void FindFac(ll n,int k=107) { if(n==1) return; if(Miller_Rabin(n)) { factor[tot++]=n; return; } ll p=n; int c=k; while(p>=n) p=pollard_rho(p,c--); FindFac(p,k); FindFac(n/p,k); } ll ansx,ansy,ans; void dfs(int k,ll x,ll y) { if(k>=tot) { if(x+y<ans) { ans=x+y; ansx=x; ansy=y; } return; } dfs(k+1,x*factor[k],y); dfs(k+1,x,y*factor[k]); } int main() { int i,j; ll n,m; while(scanf("%lld%lld",&m,&n)!=EOF) { tot=0; ans=INF; //注意初始化 FindFac(n/m,107); sort(factor,factor+tot); for(i=j=0;i<tot;i++) { ll tmp=factor[i]; while(i+1<tot && factor[i]==factor[i+1]) //注意边界 { tmp*=factor[i]; i++; } factor[j++]=tmp; } tot=j; dfs(0,1,1); if(ansx>ansy) swap(ansx,ansy); printf("%lld %lld ",ansx*m,ansy*m); } return 0; }