zoukankan      html  css  js  c++  java
  • [LOJ 1027] Dangerous Maze

    A - A Dangerous Maze
    Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Description

    You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

    If you choose the ith door, it can either take you back to the same position where you begun in xi minutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can't remember anything. So, every time you come to the beginning position, you have no past experience.

    Now you want to find the expected time to get out of the maze.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ith door will take you out of maze after xi minutes. If it's negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.

    Output

    For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print 'inf'. Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.

    Sample Input

    3

    1

    1

    2

    -10 -3

    3

    3 -6 -9

    Sample Output

    Case 1: 1/1

    Case 2: inf

    Case 3: 18/1

    貌似是第一道关于期望和概率的题,唉、弱

    分析:设出去的时间期望等于(E),出去分为两种情况:
    A. 一次就出去了,则(P1=n1/n),(n1)表示正数的个数,平均时间(T1=SUM(ai)/n1),(ai)为正数;
    B. 第一次没出去,则(P2=n2/n),(n2)表示负数的个数,平均时间为回到起点的平均时间+
    从起点出去的平均时间,前者(T2=SUM(ai)/n2),(ai)为负数,后者即为(E);
    综上:(E=P1*T1+P2*(T2+E))
    解得:(E=(P1*T1+P2*T2)/(1-P2))

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    using namespace std;
    #define N 110
    
    int main()
    {
        int T,iCase=1;
        int n,n1,n2;
        int sum1,sum2;
        scanf("%d",&T);
        while(T--)
        {
            n1=n2=0;
            sum1=sum2=0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                int x;
                scanf("%d",&x);
                if(x>0)
                {
                    n1++;
                    sum1+=x;
                }
                else
                {
                    n2++;
                    sum2-=x;
                }
            }
            int k1=sum1+sum2;
            int k2=n-n2;
            int k=__gcd(k1,k2);
            printf("Case %d: ",iCase++);
            if(k2==0)
                printf("inf
    ");
            else
                printf("%d/%d
    ",k1/k,k2/k);
        }
        return 0;
    }
  • 相关阅读:
    TCP 连接断连问题剖析
    libtool: link: you must specify an output file
    socket编程bind浮动ip
    epoll或者kqueue的原理是什么?
    推荐 30 款最好的免费项目管理软件
    QNX开发最完整图文教程(官方文档,非官方翻译)
    Android 4.X系列の界面设计中退出Android程序的代码
    APScheduler 定时任务系统
    给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target  的那 两个 整数,并返回它们的数组下标。
    APSchenuler嵌入Django
  • 原文地址:https://www.cnblogs.com/hate13/p/4552619.html
Copyright © 2011-2022 走看看