zoukankan      html  css  js  c++  java
  • [LOJ 1027] Dangerous Maze

    A - A Dangerous Maze
    Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Description

    You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

    If you choose the ith door, it can either take you back to the same position where you begun in xi minutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can't remember anything. So, every time you come to the beginning position, you have no past experience.

    Now you want to find the expected time to get out of the maze.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ith door will take you out of maze after xi minutes. If it's negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.

    Output

    For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print 'inf'. Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.

    Sample Input

    3

    1

    1

    2

    -10 -3

    3

    3 -6 -9

    Sample Output

    Case 1: 1/1

    Case 2: inf

    Case 3: 18/1

    貌似是第一道关于期望和概率的题,唉、弱

    分析:设出去的时间期望等于(E),出去分为两种情况:
    A. 一次就出去了,则(P1=n1/n),(n1)表示正数的个数,平均时间(T1=SUM(ai)/n1),(ai)为正数;
    B. 第一次没出去,则(P2=n2/n),(n2)表示负数的个数,平均时间为回到起点的平均时间+
    从起点出去的平均时间,前者(T2=SUM(ai)/n2),(ai)为负数,后者即为(E);
    综上:(E=P1*T1+P2*(T2+E))
    解得:(E=(P1*T1+P2*T2)/(1-P2))

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    using namespace std;
    #define N 110
    
    int main()
    {
        int T,iCase=1;
        int n,n1,n2;
        int sum1,sum2;
        scanf("%d",&T);
        while(T--)
        {
            n1=n2=0;
            sum1=sum2=0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                int x;
                scanf("%d",&x);
                if(x>0)
                {
                    n1++;
                    sum1+=x;
                }
                else
                {
                    n2++;
                    sum2-=x;
                }
            }
            int k1=sum1+sum2;
            int k2=n-n2;
            int k=__gcd(k1,k2);
            printf("Case %d: ",iCase++);
            if(k2==0)
                printf("inf
    ");
            else
                printf("%d/%d
    ",k1/k,k2/k);
        }
        return 0;
    }
  • 相关阅读:
    Java笔记6之三目运算符
    java笔记5之逻辑运算符以及&&与&的区别
    SAP CRM OData模型里的addressable为true的含义
    SAP CRM OData multiple origin Composition的测试
    重构老系统遗留代码的一些方法学习笔记
    SAP CRM系统里的附件存储逻辑
    如何用Postman创建SAP CRM的Opportunity业务数据
    另一种使用SAP SAT事务码对通过浏览器启动的应用的性能测量和分析方式
    SAP Hybris Commerce,CRM和C4C的登录语言选择
    SAP Hybris Commerce的页面路由实现
  • 原文地址:https://www.cnblogs.com/hate13/p/4552619.html
Copyright © 2011-2022 走看看