zoukankan      html  css  js  c++  java
  • [LOJ 1248] Dice (III)

    G - Dice (III)
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Description

    Given a dice with n sides, you have to find the expected number of times you have to throw that dice to see all its faces at least once. Assume that the dice is fair, that means when you throw the dice, the probability of occurring any face is equal.

    For example, for a fair two sided coin, the result is 3. Because when you first throw the coin, you will definitely see a new face. If you throw the coin again, the chance of getting the opposite side is 0.5, and the chance of getting the same side is 0.5. So, the result is

    1 + (1 + 0.5 * (1 + 0.5 * ...))

    = 2 + 0.5 + 0.52 + 0.53 + ...

    = 2 + 1 = 3

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 105).

    Output

    For each case, print the case number and the expected number of times you have to throw the dice to see all its faces at least once. Errors less than 10-6 will be ignored.

    Sample Input

    5

    1

    2

    3

    6

    100

    Sample Output

    Case 1: 1

    Case 2: 3

    Case 3: 5.5

    Case 4: 14.7

    Case 5: 518.7377517640

    故设dp[i]为在已经扔出了i个不同面的情况下扔出n个不同面的期望次数,dp[n]=0,答案为dp[0]
    则(dp[i]=dp[i]*frac{i}{n}+dp[i+1]*frac{n-i}{n}+1)

    移项得:(dp[i]=dp[i+1]+frac{n}{n-i})

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    #define N 100010
    
    int main()
    {
        int T,n,iCase=1;
        double dp[N];
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            dp[n]=0;
            for(int i=n-1;i>=0;i--) dp[i]=dp[i+1]+n*1.0/(n-i);
            printf("Case %d: %.7f
    ",iCase++,dp[0]);
        }
        return 0;
    }
  • 相关阅读:
    chapter02“良/恶性乳腺癌肿瘤预测”的问题
    ASCII编码和Unicode编码的区别
    Spring AOP概述
    Spring 基于注解的配置
    Spring Bean作用域&FactoryBean
    Spring <bean> 之间的关系&整合多个配置文件
    Spring 方法注入
    Spring 简化装配Bean的配置方式
    Spring 注入参数详解
    vue-router 导航守卫
  • 原文地址:https://www.cnblogs.com/hate13/p/4562498.html
Copyright © 2011-2022 走看看