zoukankan      html  css  js  c++  java
  • [LOJ 1248] Dice (III)

    G - Dice (III)
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Description

    Given a dice with n sides, you have to find the expected number of times you have to throw that dice to see all its faces at least once. Assume that the dice is fair, that means when you throw the dice, the probability of occurring any face is equal.

    For example, for a fair two sided coin, the result is 3. Because when you first throw the coin, you will definitely see a new face. If you throw the coin again, the chance of getting the opposite side is 0.5, and the chance of getting the same side is 0.5. So, the result is

    1 + (1 + 0.5 * (1 + 0.5 * ...))

    = 2 + 0.5 + 0.52 + 0.53 + ...

    = 2 + 1 = 3

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 105).

    Output

    For each case, print the case number and the expected number of times you have to throw the dice to see all its faces at least once. Errors less than 10-6 will be ignored.

    Sample Input

    5

    1

    2

    3

    6

    100

    Sample Output

    Case 1: 1

    Case 2: 3

    Case 3: 5.5

    Case 4: 14.7

    Case 5: 518.7377517640

    故设dp[i]为在已经扔出了i个不同面的情况下扔出n个不同面的期望次数,dp[n]=0,答案为dp[0]
    则(dp[i]=dp[i]*frac{i}{n}+dp[i+1]*frac{n-i}{n}+1)

    移项得:(dp[i]=dp[i+1]+frac{n}{n-i})

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    #define N 100010
    
    int main()
    {
        int T,n,iCase=1;
        double dp[N];
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            dp[n]=0;
            for(int i=n-1;i>=0;i--) dp[i]=dp[i+1]+n*1.0/(n-i);
            printf("Case %d: %.7f
    ",iCase++,dp[0]);
        }
        return 0;
    }
  • 相关阅读:
    [PDF]阅读、注释最佳软件
    [CentOS 7]挂载ntfs格式U盘
    如何更改键盘按键---KeyTweak?
    ssh 文件上传、文件目录上传和下载
    centos7安装Anaconda(Anaconda3-2020.02-Linux-x86_64)与基本命令使用
    Ubuntu 下SVN常用操作
    程序员常用docker命令
    numpy&pandas
    Deep Learning with pytorch笔记(第三章)
    pytorch中的ReflectionPad2d
  • 原文地址:https://www.cnblogs.com/hate13/p/4562498.html
Copyright © 2011-2022 走看看