zoukankan      html  css  js  c++  java
  • 高斯混合模型(GMM)

    http://www.zhihuishi.com/source/2073.html

       高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度。对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。 在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。


      我们首先要提起背景和前景的概念,前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型(GMM,Gaussian mixture model)是建模最为成功的方法之一,同时GMM可以用在监控视频索引与检索。


      混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。

    如果你是房间里那个最聪明的人,那么你走错房间了。
  • 相关阅读:
    composer设置国内镜像
    mac安装composer
    composer安装laravel
    How to use MySQL 5.6 with MAMP 3 and MAMP PRO 3
    视觉惯性里程计:IMU预积分
    通过安卓NDK调用opencv4android 并通过adb shell 测试生成的二进制文件
    ubuntu: aptget update的时候遇到“Hash Sum mismatch”错误
    卡尔曼滤波 (Kalman Filter)的一个简单实现: 恒定加速度模型
    双目相机与IMU camera IMU 联合标定工具箱使用方法——Kalibr
    HKUST VINSMONO :香港科大开源VINSSLAM算法 part 2
  • 原文地址:https://www.cnblogs.com/havendblog/p/8179759.html
Copyright © 2011-2022 走看看