zoukankan      html  css  js  c++  java
  • [BZOJ5020] [THUWC 2017]在美妙的数学王国中畅游

    Description

    数字和数学规律主宰着这个世界。

    机器的运转,

    生命的消长,

    宇宙的进程,

    这些神秘而又美妙的过程无不可以用数学的语言展现出来。

    这印证了一句古老的名言:

    “学好数理化,走遍天下都不怕。”

    学渣小R被大学的数学课程虐得生活不能自理,微积分的成绩曾是他在教室里上的课的最低分。然而他的某位陈姓室友却能轻松地在数学考试中得到满分。为了提升自己的数学课成绩,有一天晚上(在他睡觉的时候),他来到了数学王国。

    数学王国中,每个人的智商可以用一个属于 [0,1]的实数表示。数学王国中有 n 个城市,编号从 0 到 n−1 ,这些城市由若干座魔法桥连接。每个城市的中心都有一个魔法球,每个魔法球中藏有一道数学题。每个人在做完这道数学题之后都会得到一个在 [0,1] 区间内的分数。一道题可以用一个从 [0,1] 映射到 [0,1]的函数 f(x) 表示。若一个人的智商为 x ,则他做完这道数学题之后会得到 f(x)分。函数 f有三种形式:

    ​ 正弦函数 sin(ax+b) (a∈[0,1],b∈[0,π],a+b∈[0,π])

    ​ 指数函数 e^(ax+b) (a∈[−1,1],b∈[−2,0],a+b∈[−2,0])

    ​ 一次函数 ax+b (a∈[−1,1],b∈[0,1],a+b∈[0,1]

    数学王国中的魔法桥会发生变化,有时会有一座魔法桥消失,有时会有一座魔法桥出现。但在任意时刻,只存在至多一条连接任意两个城市的简单路径(即所有城市形成一个森林)。在初始情况下,数学王国中不存在任何的魔法桥。

    数学王国的国王拉格朗日很乐意传授小R数学知识,但前提是小R要先回答国王的问题。这些问题具有相同的形式,即一个智商为 x 的人从城市 u 旅行到城市 v(即经过 u 到 v 这条路径上的所有城市,包括 u和 v )且做了所有城市内的数学题后,他所有得分的总和是多少。

    Input

    第一行两个正整数 n,m 和一个字符串 type 。

    表示数学王国中共有 n 座城市,发生了 m 个事件,该数据的类型为 type 。

    typet 字符串是为了能让大家更方便地获得部分分,你可能不需要用到这个输入。

    其具体含义在【数据范围与提示】中有解释。

    接下来 n 行,第 i 行表示初始情况下编号为 i 的城市的魔法球中的函数。

    一个魔法用一个整数 f表示函数的类型,两个实数 a,b 表示函数的参数,若

    ​ f=1,则函数为 f(x)=sin(ax+b)(a∈[0,1],b∈[0,π],a+b∈[0,π])

    ​ f=2,则函数为 f(x)=e^(ax+b)(a∈[−1,1],b∈[−2,0],a+b∈[−2,0])

    ​ f=3,则函数为 f(x)=ax+b(a∈[−1,1],b∈[0,1],a+b∈[0,1])

    接下来 m行,每行描述一个事件,事件分为四类。

    ​ appear u v 表示数学王国中出现了一条连接 u 和 v 这两座城市的魔法桥 (0≤u,v<n,u≠v) ,保证连接前 u和 v 这两座城市不能互相到达。

    ​ disappear u v 表示数学王国中连接 u 和 v 这两座城市的魔法桥消失了,保证这座魔法桥是存在的。

    ​ magic c f a b 表示城市 c 的魔法球中的魔法变成了类型为 f ,参数为 a,b 的函数

    ​ travel u v x 表示询问一个智商为 x 的人从城市 u 旅行到城市 v

    (即经过 u到 v 这条路径上的所有城市,包括 u 和 v )后,他得分的总和是多少。

    若无法从 u 到达 v ,则输出一行一个字符串 unreachable。

    1≤n≤100000,1≤m≤200000

    Output

    对于每个询问,输出一行实数,表示得分的总和。

    Sample Input

    3 7 C1
    1 1 0
    3 0.5 0.5
    3 -0.5 0.7
    appear 0 1
    travel 0 1 0.3
    appear 0 2
    travel 1 2 0.5
    disappear 0 1
    appear 1 2
    travel 1 2 0.5
    

    Sample Output

    9.45520207e-001
    1.67942554e+000
    1.20000000e+000
    

    Solution

    对每个函数进行泰勒展开,展开到第(12)项就差不多了。

    然后暴力用(LCT)维护系数,每次(update)把系数扫一遍加起来就好了。

    关于泰勒展开,不严谨的说:

    [sin(ax+b)=sin b+acos bcdot x-frac{a^2sin bcdot x^2}{2!}-frac{a^3cos bcdot x^3}{3!}+...\ e^{ax+b}=sum_{i=0}^{+infty}frac{e^ba^ix^i}{i!} ]

    常数超大的(O(nlog n))

    #include<bits/stdc++.h>
    using namespace std;
     
    void read(int &x) {
        x=0;int f=1;char ch=getchar();
        for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
        for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
    }
     
    void print(int x) {
        if(x<0) putchar('-'),x=-x;
        if(!x) return ;print(x/10),putchar(x%10+48);
    }
    void write(int x) {if(!x) putchar('0');else print(x);putchar('
    ');}
    
    const int maxn = 2e5+10;
    const int lim = 11;
    
    #define lf double
    
    char ss[20];
    int n,m,_;
    int fa[maxn],son[maxn][2],rev[maxn];
    lf f[maxn][lim+1],s[maxn][lim+1],fac[maxn];
    
    #define ls son[x][0]
    #define rs son[x][1]
    
    int which(int x) {return son[fa[x]][1]==x;}
    int nrt(int x) {return son[fa[x]][0]==x||son[fa[x]][1]==x;}
    
    void update(int x) {
    	for(int i=0;i<=lim;i++) s[x][i]=f[x][i]+s[ls][i]+s[rs][i];
    }
    
    void push_rev(int x) {rev[x]^=1,swap(ls,rs);}
    void pushdown(int x) {if(rev[x]) rev[x]=0,push_rev(ls),push_rev(rs);}
    
    void rotate(int x) {
    	int y=fa[x],z=fa[y],w=which(x);
    	if(nrt(y)) son[z][son[z][1]==y]=x;
    	fa[x]=z,fa[y]=x,fa[son[x][w^1]]=y,son[y][w]=son[x][w^1],son[x][w^1]=y;
    	update(y),update(x);
    }
    
    void push(int x) {if(nrt(x)) push(fa[x]);pushdown(x);}
    
    void splay(int x) {
    	push(x);
    	for(;nrt(x);rotate(x)) if(nrt(fa[x])) rotate(which(fa[x])==which(x)?fa[x]:x);
    	update(x);
    }
    
    void access(int x) {for(int t=0;x;splay(x),rs=t,update(t=x),x=fa[x]);}
    
    void make_root(int x) {access(x),splay(x),push_rev(x);}
    
    int find_root(int x) {access(x),splay(x);while(ls) x=ls;return x;}
    
    void split(int x,int y) {make_root(x),access(y),splay(y);}
    
    void link(int x,int y) {make_root(x),fa[x]=y;}
    
    void cut(int x,int y) {split(x,y);fa[x]=son[y][0]=0,update(y);}
    
    void get(int x,int op,lf a,lf b) {
    	if(op==1) {
    		lf c=sin(b),d=cos(b),r=1.0;
    		for(int i=0;i<=lim;i++,r*=a) {
    			if(i&1) f[x][i]=d;else f[x][i]=c;
    			if((i>>1)&1) f[x][i]*=-1.0;
    			f[x][i]*=r;f[x][i]/=fac[i];
    		}
    	} else if(op==2) {
    		lf c=exp(b),r=1.0;
    		for(int i=0;i<=lim;i++,r*=a) f[x][i]=c*r/fac[i];
    	} else {
    		f[x][0]=b,f[x][1]=a;
    		for(int i=2;i<=lim;i++) f[x][i]=0;
    	}update(x);
    }
    
    void modify(int x,int op,lf a,lf b) {
    	access(x),splay(x);get(x,op,a,b);update(x);
    }
    
    void solve(int u,int v,lf x) {
    	split(u,v);if(find_root(v)!=u) return puts("unreachable"),void();
    	lf ans=0,r=1.0;
    	for(int i=0;i<=lim;i++,r*=x) ans+=s[v][i]*r;
    	printf("%.10e
    ",ans);
    }
    
    int main() {
    	read(n),read(m),read(_);
    	fac[0]=1.0;
    	for(int i=1;i<=lim;i++) fac[i]=fac[i-1]*(lf)i;
    	for(int i=1;i<=n;i++) {
    		int x;lf y,z;scanf("%d%lf%lf
    ",&x,&y,&z);
    		get(i,x,y,z);
    	}
    	for(int i=1;i<=m;i++) {
    		scanf("%s",ss+1);int u,v;lf x,y;
    		if(ss[1]=='a') read(u),read(v),link(u+1,v+1);
    		else if(ss[1]=='d') read(u),read(v),cut(u+1,v+1);
    		else if(ss[1]=='m') read(u),read(v),scanf("%lf%lf",&x,&y),modify(u+1,v,x,y);
    		else read(u),read(v),scanf("%lf",&x),solve(u+1,v+1,x);
    	}
    	return 0;
    }
    
  • 相关阅读:
    详解 exception
    如何转换音频数据格式1
    解说一个简单的Win32程序
    java通过jxl.jar实现excel导入导出
    linux2.6.32在mini2440开发板上移植(8)之添加ADC驱动程序
    Hut 1997 Seven tombs
    python help dir stackoverflow docs google遇到python问题怎么样解决
    802.11n兼容a/b/g问题(Legacy mode,Mixed mode,Greenfield mode)
    gperf的使用
    ubuntu terminal 关闭防火墙
  • 原文地址:https://www.cnblogs.com/hbyer/p/10490764.html
Copyright © 2011-2022 走看看