zoukankan      html  css  js  c++  java
  • 特征向量,特征值的意义

    参考地址https://zhidao.baidu.com/question/49272600.html

    特征向量的几何意义
    特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍 是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可 以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想 一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能 是零向量),所以一个变换的特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax= cx,你就恍然大悟了,看到了吗?cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标 量且不为零),所以所谓的特征向量不是一个向量而是一个向量族, 另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值不是那么重要,虽然我们求这两个量时 先求出特征值,但特征向量才是更本质的东西!

    比如平面上的一个变换,把一个向量关于横轴做镜像对称变换,即保持一个向量的横坐标不变,但纵坐标取相反数,把这个变换表示为矩阵就是[1 0;0 -1],其中分号表示换行,显然[1 0;0 -1]*[a b]'=[a -b]',其中上标'表示取转置,这正是我们想要的效果,那么现在可以猜一下了,这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变,显 然,横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换,那镜子表面上(横轴上)的向量当然不会变化),所以可以直接猜测其特征向量是 [a 0]'(a不为0),还有其他的吗?有,那就是纵轴上的向量,这时经过变换后,其方向反向,但仍在同一条轴上,所以也被认为是方向没有变化,所以[0 b]'(b不为0)也是其特征向量,去求求矩阵[1 0;0 -1]的特征向量就知道对不对了!

  • 相关阅读:
    《Linux命令行与shell脚本编程大全 第3版》高级Shell脚本编程---07
    《Linux命令行与shell脚本编程大全 第3版》高级Shell脚本编程---05
    shell-查看手机分辨率
    imageView-scaleType 图片压缩属性
    actionbar-displayOptions 属性分析
    setting.system-全局属性的设定
    ActivityChooserView-如何隐藏选择的应用图标
    mIsFunui-判断Funui方法
    setting-在设置中添加新的选项
    install-软件安装跟push的区别
  • 原文地址:https://www.cnblogs.com/hd-chenwei/p/6807700.html
Copyright © 2011-2022 走看看