zoukankan      html  css  js  c++  java
  • Intel格式和AT&T格式汇编区别

    一、AT&T 格式Linux 汇编语法格式

    1. AT&T 汇编格式中,寄存器名要加上 '%' 作为前缀;而在 Intel 汇编格式中,寄存器名不需要加前缀。例如:

    AT&T 格式

    Intel 格式

    pushl %eax

    push eax

    2.         AT&T 汇编格式中,用 '$' 前缀表示一个立即操作数;而在 Intel 汇编格式中,立即数的表示不用带任何前缀。例如:

    AT&T 格式

    Intel 格式

    pushl $1

    push 1

    3.         AT&T Intel 格式中的源操作数和目标操作数的位置正好相反。在 Intel 汇编格式中,目标操作数在源操作数的左边;而在 AT&T 汇编格式中,目标操作数在源操作数的右边。例如:

    AT&T 格式

    Intel 格式

    addl $1, %eax

    add eax, 1

    4.         AT&T 汇编格式中,操作数的字长由操作符的最后一个字母决定,后缀'b''w''l'分别表示操作数为字节(byte8 比特)、字(word16 比特)和长字(long32比特);而在 Intel 汇编格式中,操作数的字长是用 "byte ptr" "word ptr" 等前缀来表示的。例如:

    AT&T 格式

    Intel 格式

    movb val, %al

    mov al, byte ptr val

    5.         AT&T 汇编格式中,绝对转移和调用指令(jump/call)的操作数前要加上'*'作为前缀,而在 Intel 格式中则不需要。

    6.         远程转移指令和远程子调用指令的操作码,在 AT&T 汇编格式中为 "ljump" "lcall",而在 Intel 汇编格式中则为 "jmp far" "call far",即:

    AT&T 格式

    Intel 格式

    ljump $section, $offset

    jmp far section:offset

    lcall $section, $offset

    call far section:offset

    7.         与之相应的远程返回指令则为:

    AT&T 格式

    Intel 格式

    lret $stack_adjust

    ret far stack_adjust

    8.         AT&T 汇编格式中,内存操作数的寻址方式是

    section:disp(base, index, scale)

    9.         而在 Intel 汇编格式中,内存操作数的寻址方式为:

    section:[base + index*scale + disp]

    10.     由于 Linux 工作在保护模式下,用的是 32 位线性地址,所以在计算地址时不用考虑段基址和偏移量,而是采用如下的地址计算方法:

    disp + base + index * scale

    11.     下面是一些内存操作数的例子:

    AT&T 格式

    Intel 格式

    movl -4(%ebp), %eax

    mov eax, [ebp - 4]

    movl array(, %eax, 4), %eax

    mov eax, [eax*4 + array]

    movw array(%ebx, %eax, 4), %cx

    mov cx, [ebx + 4*eax + array]

    movb $4, %fs:(%eax)

    mov fs:eax, 4

    二、Hello World!

    既然所有程序设计语言的第一个例子都是在屏幕上打印一个字符串 "Hello World!",那我们也以这种方式来开始介绍 Linux 下的汇编语言程序设计。

    Linux 操作系统中,你有很多办法可以实现在屏幕上显示一个字符串,但最简洁的方式是使用 Linux 内核提供的系统调用。使用这种方法最大的好处是可以直接和操作系统的内核进行通讯,不需要链接诸如 libc 这样的函数库,也不需要使用 ELF 解释器,因而代码尺寸小且执行速度快。

    Linux 是一个运行在保护模式下的 32 位操作系统,采用 flat memory 模式,目前最常用到的是 ELF 格式的二进制代码。一个 ELF 格式的可执行程序通常划分为如下几个部分:.text.data .bss,其中 .text 是只读的代码区,.data 是可读可写的数据区,而 .bss 则是可读可写且没有初始化的数据区。代码区和数据区在 ELF 中统称为 section,根据实际需要你可以使用其它标准的 section,也可以添加自定义 section,但一个 ELF 可执行程序至少应该有一个 .text 部分。下面给出我们的第一个汇编程序,用的是 AT&T 汇编语言格式:

    1. AT&T 格式

    #hello.s

    .data                    # 数据段声明

            msg : .string "Hello, world!\n" # 要输出的字符串

            len = . - msg                   # 字串长度

    .text                    # 代码段声明

    .global _start           # 指定入口函数

    _start:                  # 在屏幕上显示一个字符串

            movl $len, %edx  # 参数三:字符串长度

            movl $msg, %ecx  # 参数二:要显示的字符串

            movl $1, %ebx    # 参数一:文件描述符(stdout)

            movl $4, %eax    # 系统调用号(sys_write)

            int  $0x80       # 调用内核功能

                             # 退出程序

            movl $0,%ebx     # 参数一:退出代码

            movl $1,%eax     # 系统调用号(sys_exit)

            int  $0x80       # 调用内核功能

    初次接触到 AT&T 格式的汇编代码时,很多程序员都认为太晦涩难懂了,没有关系,在 Linux 平台上你同样可以使用 Intel 格式来编写汇编程序:

    2. Intel 格式

    ; hello.asm

    section .data            ; 数据段声明

            msg db "Hello, world!", 0xA     ; 要输出的字符串

            len equ $ - msg                 ; 字串长度

    section .text            ; 代码段声明

    global _start            ; 指定入口函数

    _start:                  ; 在屏幕上显示一个字符串

            mov edx, len     ; 参数三:字符串长度

            mov ecx, msg     ; 参数二:要显示的字符串

            mov ebx, 1       ; 参数一:文件描述符(stdout)

            mov eax, 4       ; 系统调用号(sys_write)

            int 0x80         ; 调用内核功能

                             ; 退出程序

            mov ebx, 0       ; 参数一:退出代码

            mov eax, 1       ; 系统调用号(sys_exit)

            int 0x80         ; 调用内核功能

    上面两个汇编程序采用的语法虽然完全不同,但功能却都是调用 Linux 内核提供的 sys_write 来显示一个字符串,然后再调用 sys_exit 退出程序。在 Linux 内核源文件 include/asm-i386/unistd.h 中,可以找到所有系统调用的定义。

    四、系统调用

    即便是最简单的汇编程序,也难免要用到诸如输入、输出以及退出等操作,而要进行这些操作则需要调用操作系统所提供的服务,也就是系统调用。除非你的程序只完成加减乘除等数学运算,否则将很难避免使用系统调用,事实上除了系统调用不同之外,各种操作系统的汇编编程往往都是很类似的。

    Linux 平台下有两种方式来使用系统调用:利用封装后的 C 库(libc)或者通过汇编直接调用。其中通过汇编语言来直接调用系统调用,是最高效地使用 Linux 内核服务的方法,因为最终生成的程序不需要与任何库进行链接,而是直接和内核通信。

    DOS 一样,Linux 下的系统调用也是通过中断(int 0x80)来实现的。在执行 int 80 指令时,寄存器 eax 中存放的是系统调用的功能号,而传给系统调用的参数则必须按顺序放到寄存器 ebxecxedxesiedi 中,当系统调用完成之后,返回值可以在寄存器 eax 中获得。

    所有的系统调用功能号都可以在文件 /usr/include/bits/syscall.h 中找到,为了便于使用,它们是用 SYS_<name> 这样的宏来定义的,如 SYS_writeSYS_exit 等。例如,经常用到的 write 函数是如下定义的:

    ssize_t write(int fd, const void *buf, size_t count);

    该函数的功能最终是通过 SYS_write 这一系统调用来实现的。根据上面的约定,参数 fbbuf count 分别存在寄存器 ebxecx edx 中,而系统调用号 SYS_write 则放在寄存器 eax 中,当 int 0x80 指令执行完毕后,返回值可以从寄存器 eax 中获得。

    或许你已经发现,在进行系统调用时至多只有 5 个寄存器能够用来保存参数,难道所有系统调用的参数个数都不超过 5 吗?当然不是,例如 mmap 函数就有 6 个参数,这些参数最后都需要传递给系统调用 SYS_mmap

    void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t offset);c

    当一个系统调用所需的参数个数大于 5 时,执行int 0x80 指令时仍需将系统调用功能号保存在寄存器 eax 中,所不同的只是全部参数应该依次放在一块连续的内存区域里,同时在寄存器 ebx 中保存指向该内存区域的指针。系统调用完成之后,返回值仍将保存在寄存器 eax 中。

    由于只是需要一块连续的内存区域来保存系统调用的参数,因此完全可以像普通的函数调用一样使用栈(stack)来传递系统调用所需的参数。但要注意一点, Linux 采用的是 C 语言的调用模式,这就意味着所有参数必须以相反的顺序进栈,即最后一个参数先入栈,而第一个参数则最后入栈。如果采用栈来传递系统调用所需的参数,在执行 int 0x80 指令时还应该将栈指针的当前值复制到寄存器 ebx中。

    五、命令行参数

    Linux 操作系统中,当一个可执行程序通过命令行启动时,其所需的参数将被保存到栈中:首先是 argc,然后是指向各个命令行参数的指针数组 argv,最后是指向环境变量的指针数据 envp。在编写汇编语言程序时,很多时候需要对这些参数进行处理,下面的代码示范了如何在汇编代码中进行命令行参数的处理:

    3. 处理命令行参数

    # args.s

    .text

    .globl _start

    _start:

    popl %ecx # argc

    vnext:

    popl %ecx # argv

    test %ecx, %ecx # 空指针表明结束

    jz exit

    movl %ecx, %ebx

    xorl %edx, %edx

    strlen:

    movb (%ebx), %al

    inc %edx

    inc %ebx

    test %al, %al

    jnz strlen

    movb $10, -1(%ebx)

    movl $4, %eax # 系统调用号(sys_write)

    movl $1, %ebx # 文件描述符(stdout)

    int $0x80

    jmp vnext

    exit: movl $1,%eax # 系统调用号(sys_exit)

    xorl %ebx, %ebx # 退出代码

    int $0x80

    ret

     

    六、GCC 内联汇编

    用汇编编写的程序虽然运行速度快,但开发速度非常慢,效率也很低。如果只是想对关键代码段进行优化,或许更好的办法是将汇编指令嵌入到 C 语言程序中,从而充分利用高级语言和汇编语言各自的特点。但一般来讲,在 C 代码中嵌入汇编语句要比"纯粹"的汇编语言代码复杂得多,因为需要解决如何分配寄存器,以及如何与C代码中的变量相结合等问题。

    GCC 提供了很好的内联汇编支持,最基本的格式是:

    __asm__("asm statements");

    例如:

    __asm__("nop");

    如果需要同时执行多条汇编语句,则应该用"\n\t"将各个语句分隔开,例如:

    __asm__( "pushl %%eax \n\t"

    "movl $0, %%eax \n\t"

    "popl %eax");

    通常嵌入到 C 代码中的汇编语句很难做到与其它部分没有任何关系,因此更多时候需要用到完整的内联汇编格式:

    __asm__("asm statements" : outputs : inputs : registers-modified);

    插入到 C 代码中的汇编语句是以":"分隔的四个部分,其中第一部分就是汇编代码本身,通常称为指令部,其格式和在汇编语言中使用的格式基本相同。指令部分是必须的,而其它部分则可以根据实际情况而省略。

    在将汇编语句嵌入到C代码中时,操作数如何与C代码中的变量相结合是个很大的问题。GCC采用如下方法来解决这个问题:程序员提供具体的指令,而对寄存器的使用则只需给出"样板"和约束条件就可以了,具体如何将寄存器与变量结合起来完全由GCCGAS来负责。

    GCC 内联汇编语句的指令部中,加上前缀''%''的数字(%0%1)表示的就是需要使用寄存器的"样板"操作数。指令部中使用了几个样板操作数,就表明有几个变量需要与寄存器相结合,这样GCCGAS在编译和汇编时会根据后面给定的约束条件进行恰当的处理。由于样板操作数也使用'' %''作为前缀,因此在涉及到具体的寄存器时,寄存器名前面应该加上两个''%'',以免产生混淆。

    紧跟在指令部后面的是输出部,是规定输出变量如何与样板操作数进行结合的条件,每个条件称为一个"约束",必要时可以包含多个约束,相互之间用逗号分隔开就可以了。每个输出约束都以''=''号开始,然后紧跟一个对操作数类型进行说明的字后,最后是如何与变量相结合的约束。凡是与输出部中说明的操作数相结合的寄存器或操作数本身,在执行完嵌入的汇编代码后均不保留执行之前的内容,这是GCC在调度寄存器时所使用的依据。

    输出部后面是输入部,输入约束的格式和输出约束相似,但不带''=''号。如果一个输入约束要求使用寄存器,则GCC在预处理时就会为之分配一个寄存器,并插入必要的指令将操作数装入该寄存器。与输入部中说明的操作数结合的寄存器或操作数本身,在执行完嵌入的汇编代码后也不保留执行之前的内容。

    有时在进行某些操作时,除了要用到进行数据输入和输出的寄存器外,还要使用多个寄存器来保存中间计算结果,这样就难免会破坏原有寄存器的内容。在GCC内联汇编格式中的最后一个部分中,可以对将产生副作用的寄存器进行说明,以便GCC能够采用相应的措施。

    下面是一个内联汇编的简单例子:

    4.内联汇编

     

    int main()

    {

    int a = 10, b = 0;

    __asm__ __volatile__("movl %1, %%eax;\n\r"

    "movl %%eax, %0;"

    :"=r"(b)

    :"r"(a)

    :"%eax");

    printf("Result: %d, %d\n", a, b);

    }

    上面的程序完成将变量a的值赋予变量b,有几点需要说明:

    • 变量b是输出操作数,通过%0来引用,而变量a是输入操作数,通过%1来引用。
    • 输入操作数和输出操作数都使用r进行约束,表示将变量a和变量b存储在寄存器中。输入约束和输出约束的不同点在于输出约束多一个约束修饰符''=''
    • 在内联汇编语句中使用寄存器eax时,寄存器名前应该加两个''%'',即%%eax。内联汇编中使用%0%1等来标识变量,任何只带一个''%''的标识符都看成是操作数,而不是寄存器。
    • 内联汇编语句的最后一个部分告诉GCC它将改变寄存器eax中的值,GCC在处理时不应使用该寄存器来存储任何其它的值。
    • 由于变量b被指定成输出操作数,当内联汇编语句执行完毕后,它所保存的值将被更新。

    在内联汇编中用到的操作数从输出部的第一个约束开始编号,序号从0开始,每个约束记数一次,指令部要引用这些操作数时,只需在序号前加上''%''作为前缀就可以了。需要注意的是,内联汇编语句的指令部在引用一个操作数时总是将其作为32位的长字使用,但实际情况可能需要的是字或字节,因此应该在约束中指明正确的限定符:

    限定符

    意义

    "m""v""o"

    内存单元

    "r"

    任何寄存器

    "q"

    寄存器eaxebxecxedx之一

    "i""h"

    直接操作数

    "E""F"

    浮点数

    "g"

    任意

    "a""b""c""d"

    分别表示寄存器eaxebxecxedx

    "S""D"

    寄存器esiedi

    "I"

    常数(031

  • 相关阅读:
    Fractal
    加工生产调度/爬山Mountain Climbing
    魔板 Magic Squares
    USACO Section 1.5
    USACO Section 1.4(有技巧的枚举)
    卷积神经网络 CNN
    优化算法
    评价分类器的好坏
    梯度消失 / 梯度爆炸以及Xavier初始化
    Dropout
  • 原文地址:https://www.cnblogs.com/hdk1993/p/4820353.html
Copyright © 2011-2022 走看看