zoukankan      html  css  js  c++  java
  • hdoj

    Problem Description
    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.
     
    Input
    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
     
    Output
    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
     
    Sample Input
    7 2 1 4 5 1 3 3 4 1000 1000 1000 1000 0
     
    Sample Output
    8 4000
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    int a[100005];
    int l[100005],r[100005];
    int main()
    {
        int n;
        
        while(scanf("%d",&n) && n != 0)
        {
            long long ans=0;
            memset(a,0,sizeof(a));
            for(int i = 0;i<n;i++)
            {
                scanf("%d",&a[i]);
                l[i] = r[i] = i;
                while(l[i] > 0 && a[l[i]-1] >= a[i])
                {
                    l[i] = l[l[i]-1];
                }
            }
            for(int i = n-1;i>=0;i--)
            {
                while(r[i]<n-1 && a[r[i]+1] >= a[i])
                {
                    r[i] = r[r[i]+1];
                }
            }
            for(int i = 0;i<n;i++)
            {
                long long  s = (long long)a[i]*(r[i]-l[i]+1);
                if(s>ans)
                {
                    ans = s;
                }
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }

    Largest Rectangle in a Histogram【暑期培训Q题】【DP】【递归】

  • 相关阅读:
    Spring Boot使用@Scheduled定时器任务
    [TaskList] 省选前板子补完计划
    [模板] 计算几何1(基础): 点/向量/线/圆/多边形/其他运算
    网络流刷题日记
    [模板] 网络流相关/最大流ISAP/费用流zkw
    11/5/2018模拟 Problem C
    11/1/2018模拟 Max
    [模板] 笛卡尔树 && RMQ
    bzoj1010-[HNOI2008]玩具装箱toy
    [模板] 斜率优化
  • 原文地址:https://www.cnblogs.com/hdyss/p/10853303.html
Copyright © 2011-2022 走看看